| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 | from flask_login import current_user  # type: ignorefrom flask_restful import marshal, reqparse  # type: ignorefrom werkzeug.exceptions import NotFoundfrom controllers.service_api import apifrom controllers.service_api.app.error import ProviderNotInitializeErrorfrom controllers.service_api.wraps import (    DatasetApiResource,    cloud_edition_billing_knowledge_limit_check,    cloud_edition_billing_resource_check,)from core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom extensions.ext_database import dbfrom fields.segment_fields import segment_fieldsfrom models.dataset import Dataset, DocumentSegmentfrom services.dataset_service import DatasetService, DocumentService, SegmentServicefrom services.entities.knowledge_entities.knowledge_entities import SegmentUpdateArgsclass SegmentApi(DatasetApiResource):    """Resource for segments."""    @cloud_edition_billing_resource_check("vector_space", "dataset")    @cloud_edition_billing_knowledge_limit_check("add_segment", "dataset")    def post(self, tenant_id, dataset_id, document_id):        """Create single segment."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        if document.indexing_status != "completed":            raise NotFound("Document is not completed.")        if not document.enabled:            raise NotFound("Document is disabled.")        # check embedding model setting        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        # validate args        parser = reqparse.RequestParser()        parser.add_argument("segments", type=list, required=False, nullable=True, location="json")        args = parser.parse_args()        if args["segments"] is not None:            for args_item in args["segments"]:                SegmentService.segment_create_args_validate(args_item, document)            segments = SegmentService.multi_create_segment(args["segments"], document, dataset)            return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form}, 200        else:            return {"error": "Segments is required"}, 400    def get(self, tenant_id, dataset_id, document_id):        """Create single segment."""        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        # check embedding model setting        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        parser = reqparse.RequestParser()        parser.add_argument("status", type=str, action="append", default=[], location="args")        parser.add_argument("keyword", type=str, default=None, location="args")        args = parser.parse_args()        status_list = args["status"]        keyword = args["keyword"]        query = DocumentSegment.query.filter(            DocumentSegment.document_id == str(document_id), DocumentSegment.tenant_id == current_user.current_tenant_id        )        if status_list:            query = query.filter(DocumentSegment.status.in_(status_list))        if keyword:            query = query.where(DocumentSegment.content.ilike(f"%{keyword}%"))        total = query.count()        segments = query.order_by(DocumentSegment.position).all()        return {"data": marshal(segments, segment_fields), "doc_form": document.doc_form, "total": total}, 200class DatasetSegmentApi(DatasetApiResource):    def delete(self, tenant_id, dataset_id, document_id, segment_id):        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        # check segment        segment = DocumentSegment.query.filter(            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id        ).first()        if not segment:            raise NotFound("Segment not found.")        SegmentService.delete_segment(segment, document, dataset)        return {"result": "success"}, 200    @cloud_edition_billing_resource_check("vector_space", "dataset")    def post(self, tenant_id, dataset_id, document_id, segment_id):        # check dataset        dataset_id = str(dataset_id)        tenant_id = str(tenant_id)        dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()        if not dataset:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check document        document_id = str(document_id)        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        if dataset.indexing_technique == "high_quality":            # check embedding model setting            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)            # check segment        segment_id = str(segment_id)        segment = DocumentSegment.query.filter(            DocumentSegment.id == str(segment_id), DocumentSegment.tenant_id == current_user.current_tenant_id        ).first()        if not segment:            raise NotFound("Segment not found.")        # validate args        parser = reqparse.RequestParser()        parser.add_argument("segment", type=dict, required=False, nullable=True, location="json")        args = parser.parse_args()        SegmentService.segment_create_args_validate(args["segment"], document)        segment = SegmentService.update_segment(SegmentUpdateArgs(**args["segment"]), segment, document, dataset)        return {"data": marshal(segment, segment_fields), "doc_form": document.doc_form}, 200api.add_resource(SegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments")api.add_resource(    DatasetSegmentApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/segments/<uuid:segment_id>")
 |