| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 | 
from core.model_runtime.entities.model_entities import DefaultParameterNamePARAMETER_RULE_TEMPLATE: dict[DefaultParameterName, dict] = {    DefaultParameterName.TEMPERATURE: {        'label': {            'en_US': 'Temperature',            'zh_Hans': '温度',        },        'type': 'float',        'help': {            'en_US': 'Controls randomness. Lower temperature results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive. Higher temperature results in more random completions.',            'zh_Hans': '温度控制随机性。较低的温度会导致较少的随机完成。随着温度接近零,模型将变得确定性和重复性。较高的温度会导致更多的随机完成。',        },        'required': False,        'default': 0.0,        'min': 0.0,        'max': 1.0,        'precision': 2,    },    DefaultParameterName.TOP_P: {        'label': {            'en_US': 'Top P',            'zh_Hans': 'Top P',        },        'type': 'float',        'help': {            'en_US': 'Controls diversity via nucleus sampling: 0.5 means half of all likelihood-weighted options are considered.',            'zh_Hans': '通过核心采样控制多样性:0.5表示考虑了一半的所有可能性加权选项。',        },        'required': False,        'default': 1.0,        'min': 0.0,        'max': 1.0,        'precision': 2,    },    DefaultParameterName.PRESENCE_PENALTY: {        'label': {            'en_US': 'Presence Penalty',            'zh_Hans': '存在惩罚',        },        'type': 'float',        'help': {            'en_US': 'Applies a penalty to the log-probability of tokens already in the text.',            'zh_Hans': '对文本中已有的标记的对数概率施加惩罚。',        },        'required': False,        'default': 0.0,        'min': 0.0,        'max': 1.0,        'precision': 2,    },    DefaultParameterName.FREQUENCY_PENALTY: {        'label': {            'en_US': 'Frequency Penalty',            'zh_Hans': '频率惩罚',        },        'type': 'float',        'help': {            'en_US': 'Applies a penalty to the log-probability of tokens that appear in the text.',            'zh_Hans': '对文本中出现的标记的对数概率施加惩罚。',        },        'required': False,        'default': 0.0,        'min': 0.0,        'max': 1.0,        'precision': 2,    },    DefaultParameterName.MAX_TOKENS: {        'label': {            'en_US': 'Max Tokens',            'zh_Hans': '最大标记',        },        'type': 'int',        'help': {            'en_US': 'Specifies the upper limit on the length of generated results. If the generated results are truncated, you can increase this parameter.',            'zh_Hans': '指定生成结果长度的上限。如果生成结果截断,可以调大该参数。',        },        'required': False,        'default': 64,        'min': 1,        'max': 2048,        'precision': 0,    },    DefaultParameterName.RESPONSE_FORMAT: {        'label': {            'en_US': 'Response Format',            'zh_Hans': '回复格式',        },        'type': 'string',        'help': {            'en_US': 'Set a response format, ensure the output from llm is a valid code block as possible, such as JSON, XML, etc.',            'zh_Hans': '设置一个返回格式,确保llm的输出尽可能是有效的代码块,如JSON、XML等',        },        'required': False,        'options': ['JSON', 'XML'],    }}
 |