1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- import logging
- import random
- from typing import cast
- from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
- from core.entities import DEFAULT_PLUGIN_ID
- from core.model_runtime.entities.model_entities import ModelType
- from core.model_runtime.errors.invoke import InvokeBadRequestError
- from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
- from core.model_runtime.model_providers.model_provider_factory import ModelProviderFactory
- from extensions.ext_hosting_provider import hosting_configuration
- from models.provider import ProviderType
- logger = logging.getLogger(__name__)
- def check_moderation(tenant_id: str, model_config: ModelConfigWithCredentialsEntity, text: str) -> bool:
- moderation_config = hosting_configuration.moderation_config
- openai_provider_name = f"{DEFAULT_PLUGIN_ID}/openai/openai"
- if (
- moderation_config
- and moderation_config.enabled is True
- and openai_provider_name in hosting_configuration.provider_map
- and hosting_configuration.provider_map[openai_provider_name].enabled is True
- ):
- using_provider_type = model_config.provider_model_bundle.configuration.using_provider_type
- provider_name = model_config.provider
- if using_provider_type == ProviderType.SYSTEM and provider_name in moderation_config.providers:
- hosting_openai_config = hosting_configuration.provider_map[openai_provider_name]
- if hosting_openai_config.credentials is None:
- return False
- # 2000 text per chunk
- length = 2000
- text_chunks = [text[i : i + length] for i in range(0, len(text), length)]
- if len(text_chunks) == 0:
- return True
- text_chunk = random.choice(text_chunks)
- try:
- model_provider_factory = ModelProviderFactory(tenant_id)
- # Get model instance of LLM
- model_type_instance = model_provider_factory.get_model_type_instance(
- provider=openai_provider_name, model_type=ModelType.MODERATION
- )
- model_type_instance = cast(ModerationModel, model_type_instance)
- moderation_result = model_type_instance.invoke(
- model="omni-moderation-latest", credentials=hosting_openai_config.credentials, text=text_chunk
- )
- if moderation_result is True:
- return True
- except Exception:
- logger.exception(f"Fails to check moderation, provider_name: {provider_name}")
- raise InvokeBadRequestError("Rate limit exceeded, please try again later.")
- return False
|