| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 | import jsonimport loggingfrom collections.abc import Generatorfrom copy import deepcopyfrom typing import Any, Optional, Unionfrom core.agent.base_agent_runner import BaseAgentRunnerfrom core.app.apps.base_app_queue_manager import PublishFromfrom core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEventfrom core.file import file_managerfrom core.model_runtime.entities import (    AssistantPromptMessage,    LLMResult,    LLMResultChunk,    LLMResultChunkDelta,    LLMUsage,    PromptMessage,    PromptMessageContent,    PromptMessageContentType,    SystemPromptMessage,    TextPromptMessageContent,    ToolPromptMessage,    UserPromptMessage,)from core.model_runtime.entities.message_entities import ImagePromptMessageContentfrom core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransformfrom core.tools.entities.tool_entities import ToolInvokeMetafrom core.tools.tool_engine import ToolEnginefrom models.model import Messagelogger = logging.getLogger(__name__)class FunctionCallAgentRunner(BaseAgentRunner):    def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:        """        Run FunctionCall agent application        """        self.query = query        app_generate_entity = self.application_generate_entity        app_config = self.app_config        # convert tools into ModelRuntime Tool format        tool_instances, prompt_messages_tools = self._init_prompt_tools()        iteration_step = 1        max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1        # continue to run until there is not any tool call        function_call_state = True        llm_usage = {"usage": None}        final_answer = ""        # get tracing instance        trace_manager = app_generate_entity.trace_manager        def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):            if not final_llm_usage_dict["usage"]:                final_llm_usage_dict["usage"] = usage            else:                llm_usage = final_llm_usage_dict["usage"]                llm_usage.prompt_tokens += usage.prompt_tokens                llm_usage.completion_tokens += usage.completion_tokens                llm_usage.prompt_price += usage.prompt_price                llm_usage.completion_price += usage.completion_price                llm_usage.total_price += usage.total_price        model_instance = self.model_instance        while function_call_state and iteration_step <= max_iteration_steps:            function_call_state = False            if iteration_step == max_iteration_steps:                # the last iteration, remove all tools                prompt_messages_tools = []            message_file_ids = []            agent_thought = self.create_agent_thought(                message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids            )            # recalc llm max tokens            prompt_messages = self._organize_prompt_messages()            self.recalc_llm_max_tokens(self.model_config, prompt_messages)            # invoke model            chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(                prompt_messages=prompt_messages,                model_parameters=app_generate_entity.model_conf.parameters,                tools=prompt_messages_tools,                stop=app_generate_entity.model_conf.stop,                stream=self.stream_tool_call,                user=self.user_id,                callbacks=[],            )            tool_calls: list[tuple[str, str, dict[str, Any]]] = []            # save full response            response = ""            # save tool call names and inputs            tool_call_names = ""            tool_call_inputs = ""            current_llm_usage = None            if self.stream_tool_call:                is_first_chunk = True                for chunk in chunks:                    if is_first_chunk:                        self.queue_manager.publish(                            QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                        )                        is_first_chunk = False                    # check if there is any tool call                    if self.check_tool_calls(chunk):                        function_call_state = True                        tool_calls.extend(self.extract_tool_calls(chunk))                        tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])                        try:                            tool_call_inputs = json.dumps(                                {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False                            )                        except json.JSONDecodeError as e:                            # ensure ascii to avoid encoding error                            tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})                    if chunk.delta.message and chunk.delta.message.content:                        if isinstance(chunk.delta.message.content, list):                            for content in chunk.delta.message.content:                                response += content.data                        else:                            response += chunk.delta.message.content                    if chunk.delta.usage:                        increase_usage(llm_usage, chunk.delta.usage)                        current_llm_usage = chunk.delta.usage                    yield chunk            else:                result: LLMResult = chunks                # check if there is any tool call                if self.check_blocking_tool_calls(result):                    function_call_state = True                    tool_calls.extend(self.extract_blocking_tool_calls(result))                    tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])                    try:                        tool_call_inputs = json.dumps(                            {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False                        )                    except json.JSONDecodeError as e:                        # ensure ascii to avoid encoding error                        tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})                if result.usage:                    increase_usage(llm_usage, result.usage)                    current_llm_usage = result.usage                if result.message and result.message.content:                    if isinstance(result.message.content, list):                        for content in result.message.content:                            response += content.data                    else:                        response += result.message.content                if not result.message.content:                    result.message.content = ""                self.queue_manager.publish(                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                )                yield LLMResultChunk(                    model=model_instance.model,                    prompt_messages=result.prompt_messages,                    system_fingerprint=result.system_fingerprint,                    delta=LLMResultChunkDelta(                        index=0,                        message=result.message,                        usage=result.usage,                    ),                )            assistant_message = AssistantPromptMessage(content="", tool_calls=[])            if tool_calls:                assistant_message.tool_calls = [                    AssistantPromptMessage.ToolCall(                        id=tool_call[0],                        type="function",                        function=AssistantPromptMessage.ToolCall.ToolCallFunction(                            name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)                        ),                    )                    for tool_call in tool_calls                ]            else:                assistant_message.content = response            self._current_thoughts.append(assistant_message)            # save thought            self.save_agent_thought(                agent_thought=agent_thought,                tool_name=tool_call_names,                tool_input=tool_call_inputs,                thought=response,                tool_invoke_meta=None,                observation=None,                answer=response,                messages_ids=[],                llm_usage=current_llm_usage,            )            self.queue_manager.publish(                QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER            )            final_answer += response + "\n"            # call tools            tool_responses = []            for tool_call_id, tool_call_name, tool_call_args in tool_calls:                tool_instance = tool_instances.get(tool_call_name)                if not tool_instance:                    tool_response = {                        "tool_call_id": tool_call_id,                        "tool_call_name": tool_call_name,                        "tool_response": f"there is not a tool named {tool_call_name}",                        "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),                    }                else:                    # invoke tool                    tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(                        tool=tool_instance,                        tool_parameters=tool_call_args,                        user_id=self.user_id,                        tenant_id=self.tenant_id,                        message=self.message,                        invoke_from=self.application_generate_entity.invoke_from,                        agent_tool_callback=self.agent_callback,                        trace_manager=trace_manager,                    )                    # publish files                    for message_file_id, save_as in message_files:                        if save_as:                            self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)                        # publish message file                        self.queue_manager.publish(                            QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER                        )                        # add message file ids                        message_file_ids.append(message_file_id)                    tool_response = {                        "tool_call_id": tool_call_id,                        "tool_call_name": tool_call_name,                        "tool_response": tool_invoke_response,                        "meta": tool_invoke_meta.to_dict(),                    }                tool_responses.append(tool_response)                if tool_response["tool_response"] is not None:                    self._current_thoughts.append(                        ToolPromptMessage(                            content=tool_response["tool_response"],                            tool_call_id=tool_call_id,                            name=tool_call_name,                        )                    )            if len(tool_responses) > 0:                # save agent thought                self.save_agent_thought(                    agent_thought=agent_thought,                    tool_name=None,                    tool_input=None,                    thought=None,                    tool_invoke_meta={                        tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses                    },                    observation={                        tool_response["tool_call_name"]: tool_response["tool_response"]                        for tool_response in tool_responses                    },                    answer=None,                    messages_ids=message_file_ids,                )                self.queue_manager.publish(                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                )            # update prompt tool            for prompt_tool in prompt_messages_tools:                self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)            iteration_step += 1        self.update_db_variables(self.variables_pool, self.db_variables_pool)        # publish end event        self.queue_manager.publish(            QueueMessageEndEvent(                llm_result=LLMResult(                    model=model_instance.model,                    prompt_messages=prompt_messages,                    message=AssistantPromptMessage(content=final_answer),                    usage=llm_usage["usage"] or LLMUsage.empty_usage(),                    system_fingerprint="",                )            ),            PublishFrom.APPLICATION_MANAGER,        )    def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:        """        Check if there is any tool call in llm result chunk        """        if llm_result_chunk.delta.message.tool_calls:            return True        return False    def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:        """        Check if there is any blocking tool call in llm result        """        if llm_result.message.tool_calls:            return True        return False    def extract_tool_calls(        self, llm_result_chunk: LLMResultChunk    ) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:        """        Extract tool calls from llm result chunk        Returns:            List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]        """        tool_calls = []        for prompt_message in llm_result_chunk.delta.message.tool_calls:            args = {}            if prompt_message.function.arguments != "":                args = json.loads(prompt_message.function.arguments)            tool_calls.append(                (                    prompt_message.id,                    prompt_message.function.name,                    args,                )            )        return tool_calls    def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:        """        Extract blocking tool calls from llm result        Returns:            List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]        """        tool_calls = []        for prompt_message in llm_result.message.tool_calls:            args = {}            if prompt_message.function.arguments != "":                args = json.loads(prompt_message.function.arguments)            tool_calls.append(                (                    prompt_message.id,                    prompt_message.function.name,                    args,                )            )        return tool_calls    def _init_system_message(        self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None    ) -> list[PromptMessage]:        """        Initialize system message        """        if not prompt_messages and prompt_template:            return [                SystemPromptMessage(content=prompt_template),            ]        if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:            prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))        return prompt_messages    def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:        """        Organize user query        """        if self.files:            prompt_message_contents: list[PromptMessageContent] = []            prompt_message_contents.append(TextPromptMessageContent(data=query))            # get image detail config            image_detail_config = (                self.application_generate_entity.file_upload_config.image_config.detail                if (                    self.application_generate_entity.file_upload_config                    and self.application_generate_entity.file_upload_config.image_config                )                else None            )            image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW            for file in self.files:                prompt_message_contents.append(                    file_manager.to_prompt_message_content(                        file,                        image_detail_config=image_detail_config,                    )                )            prompt_messages.append(UserPromptMessage(content=prompt_message_contents))        else:            prompt_messages.append(UserPromptMessage(content=query))        return prompt_messages    def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:        """        As for now, gpt supports both fc and vision at the first iteration.        We need to remove the image messages from the prompt messages at the first iteration.        """        prompt_messages = deepcopy(prompt_messages)        for prompt_message in prompt_messages:            if isinstance(prompt_message, UserPromptMessage):                if isinstance(prompt_message.content, list):                    prompt_message.content = "\n".join(                        [                            content.data                            if content.type == PromptMessageContentType.TEXT                            else "[image]"                            if content.type == PromptMessageContentType.IMAGE                            else "[file]"                            for content in prompt_message.content                        ]                    )        return prompt_messages    def _organize_prompt_messages(self):        prompt_template = self.app_config.prompt_template.simple_prompt_template or ""        self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)        query_prompt_messages = self._organize_user_query(self.query, [])        self.history_prompt_messages = AgentHistoryPromptTransform(            model_config=self.model_config,            prompt_messages=[*query_prompt_messages, *self._current_thoughts],            history_messages=self.history_prompt_messages,            memory=self.memory,        ).get_prompt()        prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]        if len(self._current_thoughts) != 0:            # clear messages after the first iteration            prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)        return prompt_messages
 |