| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 | import jsonfrom abc import ABC, abstractmethodfrom collections.abc import Generatorfrom typing import Optional, Unionfrom core.agent.base_agent_runner import BaseAgentRunnerfrom core.agent.entities import AgentScratchpadUnitfrom core.agent.output_parser.cot_output_parser import CotAgentOutputParserfrom core.app.apps.base_app_queue_manager import PublishFromfrom core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEventfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsagefrom core.model_runtime.entities.message_entities import (    AssistantPromptMessage,    PromptMessage,    ToolPromptMessage,    UserPromptMessage,)from core.ops.ops_trace_manager import TraceQueueManagerfrom core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransformfrom core.tools.entities.tool_entities import ToolInvokeMetafrom core.tools.tool.tool import Toolfrom core.tools.tool_engine import ToolEnginefrom models.model import Messageclass CotAgentRunner(BaseAgentRunner, ABC):    _is_first_iteration = True    _ignore_observation_providers = ["wenxin"]    _historic_prompt_messages: list[PromptMessage] = None    _agent_scratchpad: list[AgentScratchpadUnit] = None    _instruction: str = None    _query: str = None    _prompt_messages_tools: list[PromptMessage] = None    def run(        self,        message: Message,        query: str,        inputs: dict[str, str],    ) -> Union[Generator, LLMResult]:        """        Run Cot agent application        """        app_generate_entity = self.application_generate_entity        self._repack_app_generate_entity(app_generate_entity)        self._init_react_state(query)        trace_manager = app_generate_entity.trace_manager        # check model mode        if "Observation" not in app_generate_entity.model_conf.stop:            if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:                app_generate_entity.model_conf.stop.append("Observation")        app_config = self.app_config        # init instruction        inputs = inputs or {}        instruction = app_config.prompt_template.simple_prompt_template        self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)        iteration_step = 1        max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1        # convert tools into ModelRuntime Tool format        tool_instances, self._prompt_messages_tools = self._init_prompt_tools()        function_call_state = True        llm_usage = {"usage": None}        final_answer = ""        def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):            if not final_llm_usage_dict["usage"]:                final_llm_usage_dict["usage"] = usage            else:                llm_usage = final_llm_usage_dict["usage"]                llm_usage.prompt_tokens += usage.prompt_tokens                llm_usage.completion_tokens += usage.completion_tokens                llm_usage.prompt_price += usage.prompt_price                llm_usage.completion_price += usage.completion_price                llm_usage.total_price += usage.total_price        model_instance = self.model_instance        while function_call_state and iteration_step <= max_iteration_steps:            # continue to run until there is not any tool call            function_call_state = False            if iteration_step == max_iteration_steps:                # the last iteration, remove all tools                self._prompt_messages_tools = []            message_file_ids = []            agent_thought = self.create_agent_thought(                message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids            )            if iteration_step > 1:                self.queue_manager.publish(                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                )            # recalc llm max tokens            prompt_messages = self._organize_prompt_messages()            self.recalc_llm_max_tokens(self.model_config, prompt_messages)            # invoke model            chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(                prompt_messages=prompt_messages,                model_parameters=app_generate_entity.model_conf.parameters,                tools=[],                stop=app_generate_entity.model_conf.stop,                stream=True,                user=self.user_id,                callbacks=[],            )            # check llm result            if not chunks:                raise ValueError("failed to invoke llm")            usage_dict = {}            react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)            scratchpad = AgentScratchpadUnit(                agent_response="",                thought="",                action_str="",                observation="",                action=None,            )            # publish agent thought if it's first iteration            if iteration_step == 1:                self.queue_manager.publish(                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                )            for chunk in react_chunks:                if isinstance(chunk, AgentScratchpadUnit.Action):                    action = chunk                    # detect action                    scratchpad.agent_response += json.dumps(chunk.model_dump())                    scratchpad.action_str = json.dumps(chunk.model_dump())                    scratchpad.action = action                else:                    scratchpad.agent_response += chunk                    scratchpad.thought += chunk                    yield LLMResultChunk(                        model=self.model_config.model,                        prompt_messages=prompt_messages,                        system_fingerprint="",                        delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),                    )            scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"            self._agent_scratchpad.append(scratchpad)            # get llm usage            if "usage" in usage_dict:                increase_usage(llm_usage, usage_dict["usage"])            else:                usage_dict["usage"] = LLMUsage.empty_usage()            self.save_agent_thought(                agent_thought=agent_thought,                tool_name=scratchpad.action.action_name if scratchpad.action else "",                tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},                tool_invoke_meta={},                thought=scratchpad.thought,                observation="",                answer=scratchpad.agent_response,                messages_ids=[],                llm_usage=usage_dict["usage"],            )            if not scratchpad.is_final():                self.queue_manager.publish(                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                )            if not scratchpad.action:                # failed to extract action, return final answer directly                final_answer = ""            else:                if scratchpad.action.action_name.lower() == "final answer":                    # action is final answer, return final answer directly                    try:                        if isinstance(scratchpad.action.action_input, dict):                            final_answer = json.dumps(scratchpad.action.action_input)                        elif isinstance(scratchpad.action.action_input, str):                            final_answer = scratchpad.action.action_input                        else:                            final_answer = f"{scratchpad.action.action_input}"                    except json.JSONDecodeError:                        final_answer = f"{scratchpad.action.action_input}"                else:                    function_call_state = True                    # action is tool call, invoke tool                    tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(                        action=scratchpad.action,                        tool_instances=tool_instances,                        message_file_ids=message_file_ids,                        trace_manager=trace_manager,                    )                    scratchpad.observation = tool_invoke_response                    scratchpad.agent_response = tool_invoke_response                    self.save_agent_thought(                        agent_thought=agent_thought,                        tool_name=scratchpad.action.action_name,                        tool_input={scratchpad.action.action_name: scratchpad.action.action_input},                        thought=scratchpad.thought,                        observation={scratchpad.action.action_name: tool_invoke_response},                        tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},                        answer=scratchpad.agent_response,                        messages_ids=message_file_ids,                        llm_usage=usage_dict["usage"],                    )                    self.queue_manager.publish(                        QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER                    )                # update prompt tool message                for prompt_tool in self._prompt_messages_tools:                    self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)            iteration_step += 1        yield LLMResultChunk(            model=model_instance.model,            prompt_messages=prompt_messages,            delta=LLMResultChunkDelta(                index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]            ),            system_fingerprint="",        )        # save agent thought        self.save_agent_thought(            agent_thought=agent_thought,            tool_name="",            tool_input={},            tool_invoke_meta={},            thought=final_answer,            observation={},            answer=final_answer,            messages_ids=[],        )        self.update_db_variables(self.variables_pool, self.db_variables_pool)        # publish end event        self.queue_manager.publish(            QueueMessageEndEvent(                llm_result=LLMResult(                    model=model_instance.model,                    prompt_messages=prompt_messages,                    message=AssistantPromptMessage(content=final_answer),                    usage=llm_usage["usage"] or LLMUsage.empty_usage(),                    system_fingerprint="",                )            ),            PublishFrom.APPLICATION_MANAGER,        )    def _handle_invoke_action(        self,        action: AgentScratchpadUnit.Action,        tool_instances: dict[str, Tool],        message_file_ids: list[str],        trace_manager: Optional[TraceQueueManager] = None,    ) -> tuple[str, ToolInvokeMeta]:        """        handle invoke action        :param action: action        :param tool_instances: tool instances        :param message_file_ids: message file ids        :param trace_manager: trace manager        :return: observation, meta        """        # action is tool call, invoke tool        tool_call_name = action.action_name        tool_call_args = action.action_input        tool_instance = tool_instances.get(tool_call_name)        if not tool_instance:            answer = f"there is not a tool named {tool_call_name}"            return answer, ToolInvokeMeta.error_instance(answer)        if isinstance(tool_call_args, str):            try:                tool_call_args = json.loads(tool_call_args)            except json.JSONDecodeError:                pass        # invoke tool        tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(            tool=tool_instance,            tool_parameters=tool_call_args,            user_id=self.user_id,            tenant_id=self.tenant_id,            message=self.message,            invoke_from=self.application_generate_entity.invoke_from,            agent_tool_callback=self.agent_callback,            trace_manager=trace_manager,        )        # publish files        for message_file_id, save_as in message_files:            if save_as:                self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)            # publish message file            self.queue_manager.publish(                QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER            )            # add message file ids            message_file_ids.append(message_file_id)        return tool_invoke_response, tool_invoke_meta    def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:        """        convert dict to action        """        return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])    def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:        """        fill in inputs from external data tools        """        for key, value in inputs.items():            try:                instruction = instruction.replace(f"{{{{{key}}}}}", str(value))            except Exception as e:                continue        return instruction    def _init_react_state(self, query) -> None:        """        init agent scratchpad        """        self._query = query        self._agent_scratchpad = []        self._historic_prompt_messages = self._organize_historic_prompt_messages()    @abstractmethod    def _organize_prompt_messages(self) -> list[PromptMessage]:        """        organize prompt messages        """    def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:        """        format assistant message        """        message = ""        for scratchpad in agent_scratchpad:            if scratchpad.is_final():                message += f"Final Answer: {scratchpad.agent_response}"            else:                message += f"Thought: {scratchpad.thought}\n\n"                if scratchpad.action_str:                    message += f"Action: {scratchpad.action_str}\n\n"                if scratchpad.observation:                    message += f"Observation: {scratchpad.observation}\n\n"        return message    def _organize_historic_prompt_messages(        self, current_session_messages: Optional[list[PromptMessage]] = None    ) -> list[PromptMessage]:        """        organize historic prompt messages        """        result: list[PromptMessage] = []        scratchpads: list[AgentScratchpadUnit] = []        current_scratchpad: AgentScratchpadUnit = None        for message in self.history_prompt_messages:            if isinstance(message, AssistantPromptMessage):                if not current_scratchpad:                    current_scratchpad = AgentScratchpadUnit(                        agent_response=message.content,                        thought=message.content or "I am thinking about how to help you",                        action_str="",                        action=None,                        observation=None,                    )                    scratchpads.append(current_scratchpad)                if message.tool_calls:                    try:                        current_scratchpad.action = AgentScratchpadUnit.Action(                            action_name=message.tool_calls[0].function.name,                            action_input=json.loads(message.tool_calls[0].function.arguments),                        )                        current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())                    except:                        pass            elif isinstance(message, ToolPromptMessage):                if current_scratchpad:                    current_scratchpad.observation = message.content            elif isinstance(message, UserPromptMessage):                if scratchpads:                    result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))                    scratchpads = []                    current_scratchpad = None                result.append(message)        if scratchpads:            result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))        historic_prompts = AgentHistoryPromptTransform(            model_config=self.model_config,            prompt_messages=current_session_messages or [],            history_messages=result,            memory=self.memory,        ).get_prompt()        return historic_prompts
 |