dataset_retrieval.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. import math
  2. import threading
  3. from collections import Counter
  4. from typing import Any, Optional, cast
  5. from flask import Flask, current_app
  6. from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
  7. from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
  8. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  9. from core.entities.agent_entities import PlanningStrategy
  10. from core.memory.token_buffer_memory import TokenBufferMemory
  11. from core.model_manager import ModelInstance, ModelManager
  12. from core.model_runtime.entities.message_entities import PromptMessageTool
  13. from core.model_runtime.entities.model_entities import ModelFeature, ModelType
  14. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  15. from core.ops.entities.trace_entity import TraceTaskName
  16. from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
  17. from core.ops.utils import measure_time
  18. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  19. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  20. from core.rag.datasource.retrieval_service import RetrievalService
  21. from core.rag.entities.context_entities import DocumentContext
  22. from core.rag.models.document import Document
  23. from core.rag.rerank.rerank_type import RerankMode
  24. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  25. from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
  26. from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
  27. from core.tools.utils.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
  28. from extensions.ext_database import db
  29. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  30. from models.dataset import Document as DatasetDocument
  31. from services.external_knowledge_service import ExternalDatasetService
  32. default_retrieval_model: dict[str, Any] = {
  33. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  34. "reranking_enable": False,
  35. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  36. "top_k": 2,
  37. "score_threshold_enabled": False,
  38. }
  39. class DatasetRetrieval:
  40. def __init__(self, application_generate_entity=None):
  41. self.application_generate_entity = application_generate_entity
  42. def retrieve(
  43. self,
  44. app_id: str,
  45. user_id: str,
  46. tenant_id: str,
  47. model_config: ModelConfigWithCredentialsEntity,
  48. config: DatasetEntity,
  49. query: str,
  50. invoke_from: InvokeFrom,
  51. show_retrieve_source: bool,
  52. hit_callback: DatasetIndexToolCallbackHandler,
  53. message_id: str,
  54. memory: Optional[TokenBufferMemory] = None,
  55. ) -> Optional[str]:
  56. """
  57. Retrieve dataset.
  58. :param app_id: app_id
  59. :param user_id: user_id
  60. :param tenant_id: tenant id
  61. :param model_config: model config
  62. :param config: dataset config
  63. :param query: query
  64. :param invoke_from: invoke from
  65. :param show_retrieve_source: show retrieve source
  66. :param hit_callback: hit callback
  67. :param message_id: message id
  68. :param memory: memory
  69. :return:
  70. """
  71. dataset_ids = config.dataset_ids
  72. if len(dataset_ids) == 0:
  73. return None
  74. retrieve_config = config.retrieve_config
  75. # check model is support tool calling
  76. model_type_instance = model_config.provider_model_bundle.model_type_instance
  77. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  78. model_manager = ModelManager()
  79. model_instance = model_manager.get_model_instance(
  80. tenant_id=tenant_id, model_type=ModelType.LLM, provider=model_config.provider, model=model_config.model
  81. )
  82. # get model schema
  83. model_schema = model_type_instance.get_model_schema(
  84. model=model_config.model, credentials=model_config.credentials
  85. )
  86. if not model_schema:
  87. return None
  88. planning_strategy = PlanningStrategy.REACT_ROUTER
  89. features = model_schema.features
  90. if features:
  91. if ModelFeature.TOOL_CALL in features or ModelFeature.MULTI_TOOL_CALL in features:
  92. planning_strategy = PlanningStrategy.ROUTER
  93. available_datasets = []
  94. for dataset_id in dataset_ids:
  95. # get dataset from dataset id
  96. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  97. # pass if dataset is not available
  98. if not dataset:
  99. continue
  100. # pass if dataset is not available
  101. if dataset and dataset.available_document_count == 0 and dataset.provider != "external":
  102. continue
  103. available_datasets.append(dataset)
  104. all_documents = []
  105. user_from = "account" if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER} else "end_user"
  106. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  107. all_documents = self.single_retrieve(
  108. app_id,
  109. tenant_id,
  110. user_id,
  111. user_from,
  112. available_datasets,
  113. query,
  114. model_instance,
  115. model_config,
  116. planning_strategy,
  117. message_id,
  118. )
  119. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  120. all_documents = self.multiple_retrieve(
  121. app_id,
  122. tenant_id,
  123. user_id,
  124. user_from,
  125. available_datasets,
  126. query,
  127. retrieve_config.top_k or 0,
  128. retrieve_config.score_threshold or 0,
  129. retrieve_config.rerank_mode or "reranking_model",
  130. retrieve_config.reranking_model,
  131. retrieve_config.weights,
  132. retrieve_config.reranking_enabled or True,
  133. message_id,
  134. )
  135. dify_documents = [item for item in all_documents if item.provider == "dify"]
  136. external_documents = [item for item in all_documents if item.provider == "external"]
  137. document_context_list = []
  138. retrieval_resource_list = []
  139. # deal with external documents
  140. for item in external_documents:
  141. document_context_list.append(DocumentContext(content=item.page_content, score=item.metadata.get("score")))
  142. source = {
  143. "dataset_id": item.metadata.get("dataset_id"),
  144. "dataset_name": item.metadata.get("dataset_name"),
  145. "document_name": item.metadata.get("title"),
  146. "data_source_type": "external",
  147. "retriever_from": invoke_from.to_source(),
  148. "score": item.metadata.get("score"),
  149. "content": item.page_content,
  150. }
  151. retrieval_resource_list.append(source)
  152. document_score_list = {}
  153. # deal with dify documents
  154. if dify_documents:
  155. for item in dify_documents:
  156. if item.metadata.get("score"):
  157. document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
  158. index_node_ids = [document.metadata["doc_id"] for document in dify_documents]
  159. segments = DocumentSegment.query.filter(
  160. DocumentSegment.dataset_id.in_(dataset_ids),
  161. DocumentSegment.status == "completed",
  162. DocumentSegment.enabled == True,
  163. DocumentSegment.index_node_id.in_(index_node_ids),
  164. ).all()
  165. if segments:
  166. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  167. sorted_segments = sorted(
  168. segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
  169. )
  170. for segment in sorted_segments:
  171. if segment.answer:
  172. document_context_list.append(
  173. DocumentContext(
  174. content=f"question:{segment.get_sign_content()} answer:{segment.answer}",
  175. score=document_score_list.get(segment.index_node_id, None),
  176. )
  177. )
  178. else:
  179. document_context_list.append(
  180. DocumentContext(
  181. content=segment.get_sign_content(),
  182. score=document_score_list.get(segment.index_node_id, None),
  183. )
  184. )
  185. if show_retrieve_source:
  186. for segment in sorted_segments:
  187. dataset = Dataset.query.filter_by(id=segment.dataset_id).first()
  188. document = DatasetDocument.query.filter(
  189. DatasetDocument.id == segment.document_id,
  190. DatasetDocument.enabled == True,
  191. DatasetDocument.archived == False,
  192. ).first()
  193. if dataset and document:
  194. source = {
  195. "dataset_id": dataset.id,
  196. "dataset_name": dataset.name,
  197. "document_id": document.id,
  198. "document_name": document.name,
  199. "data_source_type": document.data_source_type,
  200. "segment_id": segment.id,
  201. "retriever_from": invoke_from.to_source(),
  202. "score": document_score_list.get(segment.index_node_id, 0.0),
  203. }
  204. if invoke_from.to_source() == "dev":
  205. source["hit_count"] = segment.hit_count
  206. source["word_count"] = segment.word_count
  207. source["segment_position"] = segment.position
  208. source["index_node_hash"] = segment.index_node_hash
  209. if segment.answer:
  210. source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
  211. else:
  212. source["content"] = segment.content
  213. retrieval_resource_list.append(source)
  214. if hit_callback and retrieval_resource_list:
  215. retrieval_resource_list = sorted(retrieval_resource_list, key=lambda x: x.get("score") or 0.0, reverse=True)
  216. for position, item in enumerate(retrieval_resource_list, start=1):
  217. item["position"] = position
  218. hit_callback.return_retriever_resource_info(retrieval_resource_list)
  219. if document_context_list:
  220. document_context_list = sorted(document_context_list, key=lambda x: x.score or 0.0, reverse=True)
  221. return str("\n".join([document_context.content for document_context in document_context_list]))
  222. return ""
  223. def single_retrieve(
  224. self,
  225. app_id: str,
  226. tenant_id: str,
  227. user_id: str,
  228. user_from: str,
  229. available_datasets: list,
  230. query: str,
  231. model_instance: ModelInstance,
  232. model_config: ModelConfigWithCredentialsEntity,
  233. planning_strategy: PlanningStrategy,
  234. message_id: Optional[str] = None,
  235. ):
  236. tools = []
  237. for dataset in available_datasets:
  238. description = dataset.description
  239. if not description:
  240. description = "useful for when you want to answer queries about the " + dataset.name
  241. description = description.replace("\n", "").replace("\r", "")
  242. message_tool = PromptMessageTool(
  243. name=dataset.id,
  244. description=description,
  245. parameters={
  246. "type": "object",
  247. "properties": {},
  248. "required": [],
  249. },
  250. )
  251. tools.append(message_tool)
  252. dataset_id = None
  253. if planning_strategy == PlanningStrategy.REACT_ROUTER:
  254. react_multi_dataset_router = ReactMultiDatasetRouter()
  255. dataset_id = react_multi_dataset_router.invoke(
  256. query, tools, model_config, model_instance, user_id, tenant_id
  257. )
  258. elif planning_strategy == PlanningStrategy.ROUTER:
  259. function_call_router = FunctionCallMultiDatasetRouter()
  260. dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
  261. if dataset_id:
  262. # get retrieval model config
  263. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  264. if dataset:
  265. results = []
  266. if dataset.provider == "external":
  267. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  268. tenant_id=dataset.tenant_id,
  269. dataset_id=dataset_id,
  270. query=query,
  271. external_retrieval_parameters=dataset.retrieval_model,
  272. )
  273. for external_document in external_documents:
  274. document = Document(
  275. page_content=external_document.get("content"),
  276. metadata=external_document.get("metadata"),
  277. provider="external",
  278. )
  279. if document.metadata is not None:
  280. document.metadata["score"] = external_document.get("score")
  281. document.metadata["title"] = external_document.get("title")
  282. document.metadata["dataset_id"] = dataset_id
  283. document.metadata["dataset_name"] = dataset.name
  284. results.append(document)
  285. else:
  286. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  287. # get top k
  288. top_k = retrieval_model_config["top_k"]
  289. # get retrieval method
  290. if dataset.indexing_technique == "economy":
  291. retrieval_method = "keyword_search"
  292. else:
  293. retrieval_method = retrieval_model_config["search_method"]
  294. # get reranking model
  295. reranking_model = (
  296. retrieval_model_config["reranking_model"]
  297. if retrieval_model_config["reranking_enable"]
  298. else None
  299. )
  300. # get score threshold
  301. score_threshold = 0.0
  302. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  303. if score_threshold_enabled:
  304. score_threshold = retrieval_model_config.get("score_threshold", 0.0)
  305. with measure_time() as timer:
  306. results = RetrievalService.retrieve(
  307. retrieval_method=retrieval_method,
  308. dataset_id=dataset.id,
  309. query=query,
  310. top_k=top_k,
  311. score_threshold=score_threshold,
  312. reranking_model=reranking_model,
  313. reranking_mode=retrieval_model_config.get("reranking_mode", "reranking_model"),
  314. weights=retrieval_model_config.get("weights", None),
  315. )
  316. self._on_query(query, [dataset_id], app_id, user_from, user_id)
  317. if results:
  318. self._on_retrieval_end(results, message_id, timer)
  319. return results
  320. return []
  321. def multiple_retrieve(
  322. self,
  323. app_id: str,
  324. tenant_id: str,
  325. user_id: str,
  326. user_from: str,
  327. available_datasets: list,
  328. query: str,
  329. top_k: int,
  330. score_threshold: float,
  331. reranking_mode: str,
  332. reranking_model: Optional[dict] = None,
  333. weights: Optional[dict[str, Any]] = None,
  334. reranking_enable: bool = True,
  335. message_id: Optional[str] = None,
  336. ):
  337. if not available_datasets:
  338. return []
  339. threads = []
  340. all_documents: list[Document] = []
  341. dataset_ids = [dataset.id for dataset in available_datasets]
  342. index_type_check = all(
  343. item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
  344. )
  345. if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
  346. raise ValueError(
  347. "The configured knowledge base list have different indexing technique, please set reranking model."
  348. )
  349. index_type = available_datasets[0].indexing_technique
  350. if index_type == "high_quality":
  351. embedding_model_check = all(
  352. item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
  353. )
  354. embedding_model_provider_check = all(
  355. item.embedding_model_provider == available_datasets[0].embedding_model_provider
  356. for item in available_datasets
  357. )
  358. if (
  359. reranking_enable
  360. and reranking_mode == "weighted_score"
  361. and (not embedding_model_check or not embedding_model_provider_check)
  362. ):
  363. raise ValueError(
  364. "The configured knowledge base list have different embedding model, please set reranking model."
  365. )
  366. if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
  367. if weights is not None:
  368. weights["vector_setting"]["embedding_provider_name"] = available_datasets[
  369. 0
  370. ].embedding_model_provider
  371. weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
  372. for dataset in available_datasets:
  373. index_type = dataset.indexing_technique
  374. retrieval_thread = threading.Thread(
  375. target=self._retriever,
  376. kwargs={
  377. "flask_app": current_app._get_current_object(), # type: ignore
  378. "dataset_id": dataset.id,
  379. "query": query,
  380. "top_k": top_k,
  381. "all_documents": all_documents,
  382. },
  383. )
  384. threads.append(retrieval_thread)
  385. retrieval_thread.start()
  386. for thread in threads:
  387. thread.join()
  388. with measure_time() as timer:
  389. if reranking_enable:
  390. # do rerank for searched documents
  391. data_post_processor = DataPostProcessor(tenant_id, reranking_mode, reranking_model, weights, False)
  392. all_documents = data_post_processor.invoke(
  393. query=query, documents=all_documents, score_threshold=score_threshold, top_n=top_k
  394. )
  395. else:
  396. if index_type == "economy":
  397. all_documents = self.calculate_keyword_score(query, all_documents, top_k)
  398. elif index_type == "high_quality":
  399. all_documents = self.calculate_vector_score(all_documents, top_k, score_threshold)
  400. self._on_query(query, dataset_ids, app_id, user_from, user_id)
  401. if all_documents:
  402. self._on_retrieval_end(all_documents, message_id, timer)
  403. return all_documents
  404. def _on_retrieval_end(
  405. self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
  406. ) -> None:
  407. """Handle retrieval end."""
  408. dify_documents = [document for document in documents if document.provider == "dify"]
  409. for document in dify_documents:
  410. if document.metadata is not None:
  411. query = db.session.query(DocumentSegment).filter(
  412. DocumentSegment.index_node_id == document.metadata["doc_id"]
  413. )
  414. # if 'dataset_id' in document.metadata:
  415. if "dataset_id" in document.metadata:
  416. query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
  417. # add hit count to document segment
  418. query.update({DocumentSegment.hit_count: DocumentSegment.hit_count + 1}, synchronize_session=False)
  419. db.session.commit()
  420. # get tracing instance
  421. trace_manager: TraceQueueManager | None = (
  422. self.application_generate_entity.trace_manager if self.application_generate_entity else None
  423. )
  424. if trace_manager:
  425. trace_manager.add_trace_task(
  426. TraceTask(
  427. TraceTaskName.DATASET_RETRIEVAL_TRACE, message_id=message_id, documents=documents, timer=timer
  428. )
  429. )
  430. def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
  431. """
  432. Handle query.
  433. """
  434. if not query:
  435. return
  436. dataset_queries = []
  437. for dataset_id in dataset_ids:
  438. dataset_query = DatasetQuery(
  439. dataset_id=dataset_id,
  440. content=query,
  441. source="app",
  442. source_app_id=app_id,
  443. created_by_role=user_from,
  444. created_by=user_id,
  445. )
  446. dataset_queries.append(dataset_query)
  447. if dataset_queries:
  448. db.session.add_all(dataset_queries)
  449. db.session.commit()
  450. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
  451. with flask_app.app_context():
  452. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  453. if not dataset:
  454. return []
  455. if dataset.provider == "external":
  456. external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  457. tenant_id=dataset.tenant_id,
  458. dataset_id=dataset_id,
  459. query=query,
  460. external_retrieval_parameters=dataset.retrieval_model,
  461. )
  462. for external_document in external_documents:
  463. document = Document(
  464. page_content=external_document.get("content"),
  465. metadata=external_document.get("metadata"),
  466. provider="external",
  467. )
  468. if document.metadata is not None:
  469. document.metadata["score"] = external_document.get("score")
  470. document.metadata["title"] = external_document.get("title")
  471. document.metadata["dataset_id"] = dataset_id
  472. document.metadata["dataset_name"] = dataset.name
  473. all_documents.append(document)
  474. else:
  475. # get retrieval model , if the model is not setting , using default
  476. retrieval_model = dataset.retrieval_model or default_retrieval_model
  477. if dataset.indexing_technique == "economy":
  478. # use keyword table query
  479. documents = RetrievalService.retrieve(
  480. retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=top_k
  481. )
  482. if documents:
  483. all_documents.extend(documents)
  484. else:
  485. if top_k > 0:
  486. # retrieval source
  487. documents = RetrievalService.retrieve(
  488. retrieval_method=retrieval_model["search_method"],
  489. dataset_id=dataset.id,
  490. query=query,
  491. top_k=retrieval_model.get("top_k") or 2,
  492. score_threshold=retrieval_model.get("score_threshold", 0.0)
  493. if retrieval_model["score_threshold_enabled"]
  494. else 0.0,
  495. reranking_model=retrieval_model.get("reranking_model", None)
  496. if retrieval_model["reranking_enable"]
  497. else None,
  498. reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
  499. weights=retrieval_model.get("weights", None),
  500. )
  501. all_documents.extend(documents)
  502. def to_dataset_retriever_tool(
  503. self,
  504. tenant_id: str,
  505. dataset_ids: list[str],
  506. retrieve_config: DatasetRetrieveConfigEntity,
  507. return_resource: bool,
  508. invoke_from: InvokeFrom,
  509. hit_callback: DatasetIndexToolCallbackHandler,
  510. ) -> Optional[list[DatasetRetrieverBaseTool]]:
  511. """
  512. A dataset tool is a tool that can be used to retrieve information from a dataset
  513. :param tenant_id: tenant id
  514. :param dataset_ids: dataset ids
  515. :param retrieve_config: retrieve config
  516. :param return_resource: return resource
  517. :param invoke_from: invoke from
  518. :param hit_callback: hit callback
  519. """
  520. tools = []
  521. available_datasets = []
  522. for dataset_id in dataset_ids:
  523. # get dataset from dataset id
  524. dataset = db.session.query(Dataset).filter(Dataset.tenant_id == tenant_id, Dataset.id == dataset_id).first()
  525. # pass if dataset is not available
  526. if not dataset:
  527. continue
  528. # pass if dataset is not available
  529. if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
  530. continue
  531. available_datasets.append(dataset)
  532. if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
  533. # get retrieval model config
  534. default_retrieval_model = {
  535. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  536. "reranking_enable": False,
  537. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  538. "top_k": 2,
  539. "score_threshold_enabled": False,
  540. }
  541. for dataset in available_datasets:
  542. retrieval_model_config = dataset.retrieval_model or default_retrieval_model
  543. # get top k
  544. top_k = retrieval_model_config["top_k"]
  545. # get score threshold
  546. score_threshold = None
  547. score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
  548. if score_threshold_enabled:
  549. score_threshold = retrieval_model_config.get("score_threshold")
  550. from core.tools.utils.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
  551. tool = DatasetRetrieverTool.from_dataset(
  552. dataset=dataset,
  553. top_k=top_k,
  554. score_threshold=score_threshold,
  555. hit_callbacks=[hit_callback],
  556. return_resource=return_resource,
  557. retriever_from=invoke_from.to_source(),
  558. )
  559. tools.append(tool)
  560. elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
  561. from core.tools.utils.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  562. tool = DatasetMultiRetrieverTool.from_dataset(
  563. dataset_ids=[dataset.id for dataset in available_datasets],
  564. tenant_id=tenant_id,
  565. top_k=retrieve_config.top_k or 2,
  566. score_threshold=retrieve_config.score_threshold,
  567. hit_callbacks=[hit_callback],
  568. return_resource=return_resource,
  569. retriever_from=invoke_from.to_source(),
  570. reranking_provider_name=retrieve_config.reranking_model.get("reranking_provider_name"),
  571. reranking_model_name=retrieve_config.reranking_model.get("reranking_model_name"),
  572. )
  573. tools.append(tool)
  574. return tools
  575. def calculate_keyword_score(self, query: str, documents: list[Document], top_k: int) -> list[Document]:
  576. """
  577. Calculate keywords scores
  578. :param query: search query
  579. :param documents: documents for reranking
  580. :return:
  581. """
  582. keyword_table_handler = JiebaKeywordTableHandler()
  583. query_keywords = keyword_table_handler.extract_keywords(query, None)
  584. documents_keywords = []
  585. for document in documents:
  586. if document.metadata is not None:
  587. # get the document keywords
  588. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  589. document.metadata["keywords"] = document_keywords
  590. documents_keywords.append(document_keywords)
  591. # Counter query keywords(TF)
  592. query_keyword_counts = Counter(query_keywords)
  593. # total documents
  594. total_documents = len(documents)
  595. # calculate all documents' keywords IDF
  596. all_keywords = set()
  597. for document_keywords in documents_keywords:
  598. all_keywords.update(document_keywords)
  599. keyword_idf = {}
  600. for keyword in all_keywords:
  601. # calculate include query keywords' documents
  602. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  603. # IDF
  604. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  605. query_tfidf = {}
  606. for keyword, count in query_keyword_counts.items():
  607. tf = count
  608. idf = keyword_idf.get(keyword, 0)
  609. query_tfidf[keyword] = tf * idf
  610. # calculate all documents' TF-IDF
  611. documents_tfidf = []
  612. for document_keywords in documents_keywords:
  613. document_keyword_counts = Counter(document_keywords)
  614. document_tfidf = {}
  615. for keyword, count in document_keyword_counts.items():
  616. tf = count
  617. idf = keyword_idf.get(keyword, 0)
  618. document_tfidf[keyword] = tf * idf
  619. documents_tfidf.append(document_tfidf)
  620. def cosine_similarity(vec1, vec2):
  621. intersection = set(vec1.keys()) & set(vec2.keys())
  622. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  623. sum1 = sum(vec1[x] ** 2 for x in vec1)
  624. sum2 = sum(vec2[x] ** 2 for x in vec2)
  625. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  626. if not denominator:
  627. return 0.0
  628. else:
  629. return float(numerator) / denominator
  630. similarities = []
  631. for document_tfidf in documents_tfidf:
  632. similarity = cosine_similarity(query_tfidf, document_tfidf)
  633. similarities.append(similarity)
  634. for document, score in zip(documents, similarities):
  635. # format document
  636. if document.metadata is not None:
  637. document.metadata["score"] = score
  638. documents = sorted(documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True)
  639. return documents[:top_k] if top_k else documents
  640. def calculate_vector_score(
  641. self, all_documents: list[Document], top_k: int, score_threshold: float
  642. ) -> list[Document]:
  643. filter_documents = []
  644. for document in all_documents:
  645. if score_threshold is None or (document.metadata and document.metadata.get("score", 0) >= score_threshold):
  646. filter_documents.append(document)
  647. if not filter_documents:
  648. return []
  649. filter_documents = sorted(
  650. filter_documents, key=lambda x: x.metadata.get("score", 0) if x.metadata else 0, reverse=True
  651. )
  652. return filter_documents[:top_k] if top_k else filter_documents