retrieval_service.py 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.models.document import Document
  8. from core.rag.rerank.rerank_type import RerankMode
  9. from core.rag.retrieval.retrieval_methods import RetrievalMethod
  10. from extensions.ext_database import db
  11. from models.dataset import Dataset
  12. from services.external_knowledge_service import ExternalDatasetService
  13. default_retrieval_model = {
  14. "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
  15. "reranking_enable": False,
  16. "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
  17. "top_k": 2,
  18. "score_threshold_enabled": False,
  19. }
  20. class RetrievalService:
  21. @classmethod
  22. def retrieve(
  23. cls,
  24. retrieval_method: str,
  25. dataset_id: str,
  26. query: str,
  27. top_k: int,
  28. score_threshold: Optional[float] = 0.0,
  29. reranking_model: Optional[dict] = None,
  30. reranking_mode: str = "reranking_model",
  31. weights: Optional[dict] = None,
  32. ):
  33. if not query:
  34. return []
  35. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  36. if not dataset:
  37. return []
  38. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  39. return []
  40. all_documents: list[Document] = []
  41. threads: list[threading.Thread] = []
  42. exceptions: list[str] = []
  43. # retrieval_model source with keyword
  44. if retrieval_method == "keyword_search":
  45. keyword_thread = threading.Thread(
  46. target=RetrievalService.keyword_search,
  47. kwargs={
  48. "flask_app": current_app._get_current_object(), # type: ignore
  49. "dataset_id": dataset_id,
  50. "query": query,
  51. "top_k": top_k,
  52. "all_documents": all_documents,
  53. "exceptions": exceptions,
  54. },
  55. )
  56. threads.append(keyword_thread)
  57. keyword_thread.start()
  58. # retrieval_model source with semantic
  59. if RetrievalMethod.is_support_semantic_search(retrieval_method):
  60. embedding_thread = threading.Thread(
  61. target=RetrievalService.embedding_search,
  62. kwargs={
  63. "flask_app": current_app._get_current_object(), # type: ignore
  64. "dataset_id": dataset_id,
  65. "query": query,
  66. "top_k": top_k,
  67. "score_threshold": score_threshold,
  68. "reranking_model": reranking_model,
  69. "all_documents": all_documents,
  70. "retrieval_method": retrieval_method,
  71. "exceptions": exceptions,
  72. },
  73. )
  74. threads.append(embedding_thread)
  75. embedding_thread.start()
  76. # retrieval source with full text
  77. if RetrievalMethod.is_support_fulltext_search(retrieval_method):
  78. full_text_index_thread = threading.Thread(
  79. target=RetrievalService.full_text_index_search,
  80. kwargs={
  81. "flask_app": current_app._get_current_object(), # type: ignore
  82. "dataset_id": dataset_id,
  83. "query": query,
  84. "retrieval_method": retrieval_method,
  85. "score_threshold": score_threshold,
  86. "top_k": top_k,
  87. "reranking_model": reranking_model,
  88. "all_documents": all_documents,
  89. "exceptions": exceptions,
  90. },
  91. )
  92. threads.append(full_text_index_thread)
  93. full_text_index_thread.start()
  94. for thread in threads:
  95. thread.join()
  96. if exceptions:
  97. exception_message = ";\n".join(exceptions)
  98. raise ValueError(exception_message)
  99. if retrieval_method == RetrievalMethod.HYBRID_SEARCH.value:
  100. data_post_processor = DataPostProcessor(
  101. str(dataset.tenant_id), reranking_mode, reranking_model, weights, False
  102. )
  103. all_documents = data_post_processor.invoke(
  104. query=query,
  105. documents=all_documents,
  106. score_threshold=score_threshold,
  107. top_n=top_k,
  108. )
  109. return all_documents
  110. @classmethod
  111. def external_retrieve(cls, dataset_id: str, query: str, external_retrieval_model: Optional[dict] = None):
  112. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  113. if not dataset:
  114. return []
  115. all_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
  116. dataset.tenant_id, dataset_id, query, external_retrieval_model or {}
  117. )
  118. return all_documents
  119. @classmethod
  120. def keyword_search(
  121. cls, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list, exceptions: list
  122. ):
  123. with flask_app.app_context():
  124. try:
  125. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  126. if not dataset:
  127. raise ValueError("dataset not found")
  128. keyword = Keyword(dataset=dataset)
  129. documents = keyword.search(cls.escape_query_for_search(query), top_k=top_k)
  130. all_documents.extend(documents)
  131. except Exception as e:
  132. exceptions.append(str(e))
  133. @classmethod
  134. def embedding_search(
  135. cls,
  136. flask_app: Flask,
  137. dataset_id: str,
  138. query: str,
  139. top_k: int,
  140. score_threshold: Optional[float],
  141. reranking_model: Optional[dict],
  142. all_documents: list,
  143. retrieval_method: str,
  144. exceptions: list,
  145. ):
  146. with flask_app.app_context():
  147. try:
  148. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  149. if not dataset:
  150. raise ValueError("dataset not found")
  151. vector = Vector(dataset=dataset)
  152. documents = vector.search_by_vector(
  153. cls.escape_query_for_search(query),
  154. search_type="similarity_score_threshold",
  155. top_k=top_k,
  156. score_threshold=score_threshold,
  157. filter={"group_id": [dataset.id]},
  158. )
  159. if documents:
  160. if (
  161. reranking_model
  162. and reranking_model.get("reranking_model_name")
  163. and reranking_model.get("reranking_provider_name")
  164. and retrieval_method == RetrievalMethod.SEMANTIC_SEARCH.value
  165. ):
  166. data_post_processor = DataPostProcessor(
  167. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  168. )
  169. all_documents.extend(
  170. data_post_processor.invoke(
  171. query=query,
  172. documents=documents,
  173. score_threshold=score_threshold,
  174. top_n=len(documents),
  175. )
  176. )
  177. else:
  178. all_documents.extend(documents)
  179. except Exception as e:
  180. exceptions.append(str(e))
  181. @classmethod
  182. def full_text_index_search(
  183. cls,
  184. flask_app: Flask,
  185. dataset_id: str,
  186. query: str,
  187. top_k: int,
  188. score_threshold: Optional[float],
  189. reranking_model: Optional[dict],
  190. all_documents: list,
  191. retrieval_method: str,
  192. exceptions: list,
  193. ):
  194. with flask_app.app_context():
  195. try:
  196. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  197. if not dataset:
  198. raise ValueError("dataset not found")
  199. vector_processor = Vector(
  200. dataset=dataset,
  201. )
  202. documents = vector_processor.search_by_full_text(cls.escape_query_for_search(query), top_k=top_k)
  203. if documents:
  204. if (
  205. reranking_model
  206. and reranking_model.get("reranking_model_name")
  207. and reranking_model.get("reranking_provider_name")
  208. and retrieval_method == RetrievalMethod.FULL_TEXT_SEARCH.value
  209. ):
  210. data_post_processor = DataPostProcessor(
  211. str(dataset.tenant_id), RerankMode.RERANKING_MODEL.value, reranking_model, None, False
  212. )
  213. all_documents.extend(
  214. data_post_processor.invoke(
  215. query=query,
  216. documents=documents,
  217. score_threshold=score_threshold,
  218. top_n=len(documents),
  219. )
  220. )
  221. else:
  222. all_documents.extend(documents)
  223. except Exception as e:
  224. exceptions.append(str(e))
  225. @staticmethod
  226. def escape_query_for_search(query: str) -> str:
  227. return query.replace('"', '\\"')