| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950 | import jsonimport loggingimport datetimeimport timeimport randomimport uuidfrom typing import Optional, Listfrom flask import current_appfrom sqlalchemy import funcfrom core.model_providers.model_factory import ModelFactoryfrom extensions.ext_redis import redis_clientfrom flask_login import current_userfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom libs import helperfrom models.account import Accountfrom models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegmentfrom models.model import UploadFilefrom models.source import DataSourceBindingfrom services.errors.account import NoPermissionErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.create_segment_to_index_task import create_segment_to_index_taskfrom tasks.update_segment_index_task import update_segment_index_taskfrom tasks.update_segment_keyword_index_task\    import update_segment_keyword_index_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):        if user:            permission_filter = db.or_(Dataset.created_by == user.id,                                       Dataset.permission == 'all_team_members')        else:            permission_filter = Dataset.permission == 'all_team_members'        datasets = Dataset.query.filter(            db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \            .order_by(Dataset.created_at.desc()) \            .paginate(            page=page,            per_page=per_page,            max_per_page=100,            error_out=False        )        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = db.session.query(DatasetProcessRule). \            filter(DatasetProcessRule.dataset_id == dataset_id). \            order_by(DatasetProcessRule.created_at.desc()). \            limit(1). \            one_or_none()        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES['mode']            rules = DocumentService.DEFAULT_RULES['rules']        return {            'mode': mode,            'rules': rules        }    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(Dataset.id.in_(ids),                                        Dataset.tenant_id == tenant_id).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(                f'Dataset with name {name} already exists.')        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        db.session.add(dataset)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id):        dataset = Dataset.query.filter_by(            id=dataset_id        ).first()        if dataset is None:            return None        else:            return dataset    @staticmethod    def update_dataset(dataset_id, data, user):        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_permission(dataset, user)        if dataset.indexing_technique != data['indexing_technique']:            # if update indexing_technique            if data['indexing_technique'] == 'economy':                deal_dataset_vector_index_task.delay(dataset_id, 'remove')            elif data['indexing_technique'] == 'high_quality':                deal_dataset_vector_index_task.delay(dataset_id, 'add')        filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}        filtered_data['updated_by'] = user.id        filtered_data['updated_at'] = datetime.datetime.now()        dataset.query.filter_by(id=dataset_id).update(filtered_data)        db.session.commit()        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        # todo: cannot delete dataset if it is being processed        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')        if dataset.permission == 'only_me' and dataset.created_by != user.id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \            .order_by(db.desc(DatasetQuery.created_at)) \            .paginate(            page=page, per_page=per_page, max_per_page=100, error_out=False        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \            .order_by(db.desc(AppDatasetJoin.created_at)).all()class DocumentService:    DEFAULT_RULES = {        'mode': 'custom',        'rules': {            'pre_processing_rules': [                {'id': 'remove_extra_spaces', 'enabled': True},                {'id': 'remove_urls_emails', 'enabled': False}            ],            'segmentation': {                'delimiter': '\n',                'max_tokens': 500            }        }    }    DOCUMENT_METADATA_SCHEMA = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str        }    }    @staticmethod    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id,            Document.dataset_id == dataset_id        ).first()        return document    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id        ).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> List[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.enabled == True        ).all()        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:        documents = db.session.query(Document).filter(            Document.batch == batch,            Document.dataset_id == dataset_id,            Document.tenant_id == current_user.current_tenant_id        ).all()        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile). \            filter(UploadFile.id == file_id). \            one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # trigger document_was_deleted signal        document_was_deleted.send(document.id, dataset_id=document.dataset_id)        db.session.delete(document)        db.session.commit()    @staticmethod    def pause_document(document):        if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.utcnow()        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = current_user.id        document.paused_at = time.time()        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(dataset: Dataset, document_data: dict,                                      account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                      created_from: str = 'web'):        # check document limit        if current_app.config['EDITION'] == 'CLOUD':            documents_count = DocumentService.get_tenant_documents_count()            tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])            if documents_count > tenant_document_count:                raise ValueError(f"over document limit {tenant_document_count}.")        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = document_data["data_source"]["type"]            db.session.commit()        if not dataset.indexing_technique:            if 'indexing_technique' not in document_data \                    or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:                raise ValueError("Indexing technique is required")            dataset.indexing_technique = document_data["indexing_technique"]        documents = []        batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))        if 'original_document_id' in document_data and document_data["original_document_id"]:            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)            documents.append(document)        else:            # save process rule            if not dataset_process_rule:                process_rule = document_data["process_rule"]                if process_rule["mode"] == "custom":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(process_rule["rules"]),                        created_by=account.id                    )                elif process_rule["mode"] == "automatic":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                        created_by=account.id                    )                db.session.add(dataset_process_rule)                db.session.commit()            position = DocumentService.get_documents_position(dataset.id)            document_ids = []            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }                    document = DocumentService.save_document(dataset, dataset_process_rule.id,                                                             document_data["data_source"]["type"],                                                             document_data["doc_form"],                                                             data_source_info, created_from, position,                                                             account, file_name, batch)                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                exist_page_ids = []                exist_document = dict()                documents = Document.query.filter_by(                    dataset_id=dataset.id,                    tenant_id=current_user.current_tenant_id,                    data_source_type='notion_import',                    enabled=True                ).all()                if documents:                    for document in documents:                        data_source_info = json.loads(document.data_source_info)                        exist_page_ids.append(data_source_info['notion_page_id'])                        exist_document[data_source_info['notion_page_id']] = document.id                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        if page['page_id'] not in exist_page_ids:                            data_source_info = {                                "notion_workspace_id": workspace_id,                                "notion_page_id": page['page_id'],                                "notion_page_icon": page['page_icon'],                                "type": page['type']                            }                            document = DocumentService.save_document(dataset, dataset_process_rule.id,                                                                     document_data["data_source"]["type"],                                                                     document_data["doc_form"],                                                                     data_source_info, created_from, position,                                                                     account, page['page_name'], batch)                            # if page['type'] == 'database':                            #     document.splitting_completed_at = datetime.datetime.utcnow()                            #     document.cleaning_completed_at = datetime.datetime.utcnow()                            #     document.parsing_completed_at = datetime.datetime.utcnow()                            #     document.completed_at = datetime.datetime.utcnow()                            #     document.indexing_status = 'completed'                            #     document.word_count = 0                            #     document.tokens = 0                            #     document.indexing_latency = 0                            db.session.add(document)                            db.session.flush()                            # if page['type'] != 'database':                            document_ids.append(document.id)                            documents.append(document)                            position += 1                        else:                            exist_document.pop(page['page_id'])                # delete not selected documents                if len(exist_document) > 0:                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)            db.session.commit()            # trigger async task            #document_index_created.send(dataset.id, document_ids=document_ids)            document_indexing_task.delay(dataset.id, document_ids)        return documents, batch    @staticmethod    def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,                      data_source_info: dict, created_from: str, position: int, account: Account, name: str,                      batch: str):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form        )        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(Document.completed_at.isnot(None),                                                Document.enabled == True,                                                Document.archived == False,                                                Document.tenant_id == current_user.current_tenant_id).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(dataset: Dataset, document_data: dict,                                        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                        created_from: str = 'web'):        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])        if document.display_status != 'available':            raise ValueError("Document is not available")        # save process rule        if 'process_rule' in document_data and document_data['process_rule']:            process_rule = document_data["process_rule"]            if process_rule["mode"] == "custom":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(process_rule["rules"]),                    created_by=account.id                )            elif process_rule["mode"] == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id                )            db.session.add(dataset_process_rule)            db.session.commit()            document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if 'data_source' in document_data and document_data['data_source']:            file_name = ''            data_source_info = {}            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page['page_id'],                            "notion_page_icon": page['page_icon'],                            "type": page['type']                        }            document.data_source_type = document_data["data_source"]["type"]            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document to be waiting        document.indexing_status = 'waiting'        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.utcnow()        document.created_from = created_from        document.doc_form = document_data['doc_form']        db.session.add(document)        db.session.commit()        # update document segment        update_params = {            DocumentSegment.status: 're_segment'        }        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):        # check document limit        if current_app.config['EDITION'] == 'CLOUD':            documents_count = DocumentService.get_tenant_documents_count()            tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])            if documents_count > tenant_document_count:                raise ValueError(f"over document limit {tenant_document_count}.")        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name='',            data_source_type=document_data["data_source"]["type"],            indexing_technique=document_data["indexing_technique"],            created_by=account.id        )        db.session.add(dataset)        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + '...'        dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def document_create_args_validate(cls, args: dict):        if 'original_document_id' not in args or not args['original_document_id']:            DocumentService.data_source_args_validate(args)            DocumentService.process_rule_args_validate(args)        else:            if ('data_source' not in args and not args['data_source']) \                    and ('process_rule' not in args and not args['process_rule']):                raise ValueError("Data source or Process rule is required")            else:                if 'data_source' in args and args['data_source']:                    DocumentService.data_source_args_validate(args)                if 'process_rule' in args and args['process_rule']:                    DocumentService.process_rule_args_validate(args)    @classmethod    def data_source_args_validate(cls, args: dict):        if 'data_source' not in args or not args['data_source']:            raise ValueError("Data source is required")        if not isinstance(args['data_source'], dict):            raise ValueError("Data source is invalid")        if 'type' not in args['data_source'] or not args['data_source']['type']:            raise ValueError("Data source type is required")        if args['data_source']['type'] not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:            raise ValueError("Data source info is required")        if args['data_source']['type'] == 'upload_file':            if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'file_info_list']:                raise ValueError("File source info is required")        if args['data_source']['type'] == 'notion_import':            if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'notion_info_list']:                raise ValueError("Notion source info is required")    @classmethod    def process_rule_args_validate(cls, args: dict):        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if 'info_list' not in args or not args['info_list']:            raise ValueError("Data source info is required")        if not isinstance(args['info_list'], dict):            raise ValueError("Data info is invalid")        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == 'qa_model':            if 'answer' not in args or not args['answer']:                raise ValueError("Answer is required")    @classmethod    def create_segment(cls, args: dict, document: Document):        content = args['content']        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        embedding_model = ModelFactory.get_embedding_model(            tenant_id=document.tenant_id        )        # calc embedding use tokens        tokens = embedding_model.get_num_tokens(content)        max_position = db.session.query(func.max(DocumentSegment.position)).filter(            DocumentSegment.document_id == document.id        ).scalar()        segment_document = DocumentSegment(            tenant_id=current_user.current_tenant_id,            dataset_id=document.dataset_id,            document_id=document.id,            index_node_id=doc_id,            index_node_hash=segment_hash,            position=max_position + 1 if max_position else 1,            content=content,            word_count=len(content),            tokens=tokens,            created_by=current_user.id        )        if document.doc_form == 'qa_model':            segment_document.answer = args['answer']        db.session.add(segment_document)        db.session.commit()        indexing_cache_key = 'segment_{}_indexing'.format(segment_document.id)        redis_client.setex(indexing_cache_key, 600, 1)        create_segment_to_index_task.delay(segment_document.id, args['keywords'])        return segment_document    @classmethod    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document):        indexing_cache_key = 'segment_{}_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        content = args['content']        if segment.content == content:            if document.doc_form == 'qa_model':                segment.answer = args['answer']            if args['keywords']:                segment.keywords = args['keywords']            db.session.add(segment)            db.session.commit()            # update segment index task            redis_client.setex(indexing_cache_key, 600, 1)            update_segment_keyword_index_task.delay(segment.id)        else:            segment_hash = helper.generate_text_hash(content)            embedding_model = ModelFactory.get_embedding_model(                tenant_id=document.tenant_id            )            # calc embedding use tokens            tokens = embedding_model.get_num_tokens(content)            segment.content = content            segment.index_node_hash = segment_hash            segment.word_count = len(content)            segment.tokens = tokens            segment.status = 'updating'            segment.updated_by = current_user.id            segment.updated_at = datetime.datetime.utcnow()            if document.doc_form == 'qa_model':                segment.answer = args['answer']            db.session.add(segment)            db.session.commit()            # update segment index task            redis_client.setex(indexing_cache_key, 600, 1)            update_segment_index_task.delay(segment.id, args['keywords'])        return segment
 |