agent_executor.py 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. import enum
  2. import logging
  3. from typing import Union, Optional
  4. from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
  5. from langchain.callbacks.manager import Callbacks
  6. from langchain.memory.chat_memory import BaseChatMemory
  7. from langchain.tools import BaseTool
  8. from pydantic import BaseModel, Extra
  9. from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
  10. from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
  11. from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
  12. from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
  13. from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
  14. from langchain.agents import AgentExecutor as LCAgentExecutor
  15. from core.helper import moderation
  16. from core.model_providers.error import LLMError
  17. from core.model_providers.models.llm.base import BaseLLM
  18. from core.tool.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
  19. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  20. class PlanningStrategy(str, enum.Enum):
  21. ROUTER = 'router'
  22. REACT_ROUTER = 'react_router'
  23. REACT = 'react'
  24. FUNCTION_CALL = 'function_call'
  25. class AgentConfiguration(BaseModel):
  26. strategy: PlanningStrategy
  27. model_instance: BaseLLM
  28. tools: list[BaseTool]
  29. summary_model_instance: BaseLLM = None
  30. memory: Optional[BaseChatMemory] = None
  31. callbacks: Callbacks = None
  32. max_iterations: int = 6
  33. max_execution_time: Optional[float] = None
  34. early_stopping_method: str = "generate"
  35. # `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
  36. class Config:
  37. """Configuration for this pydantic object."""
  38. extra = Extra.forbid
  39. arbitrary_types_allowed = True
  40. class AgentExecuteResult(BaseModel):
  41. strategy: PlanningStrategy
  42. output: Optional[str]
  43. configuration: AgentConfiguration
  44. class AgentExecutor:
  45. def __init__(self, configuration: AgentConfiguration):
  46. self.configuration = configuration
  47. self.agent = self._init_agent()
  48. def _init_agent(self) -> Union[BaseSingleActionAgent, BaseMultiActionAgent]:
  49. if self.configuration.strategy == PlanningStrategy.REACT:
  50. agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
  51. model_instance=self.configuration.model_instance,
  52. tools=self.configuration.tools,
  53. output_parser=StructuredChatOutputParser(),
  54. summary_model_instance=self.configuration.summary_model_instance
  55. if self.configuration.summary_model_instance else None,
  56. verbose=True
  57. )
  58. elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
  59. agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
  60. model_instance=self.configuration.model_instance,
  61. tools=self.configuration.tools,
  62. extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
  63. summary_model_instance=self.configuration.summary_model_instance
  64. if self.configuration.summary_model_instance else None,
  65. verbose=True
  66. )
  67. elif self.configuration.strategy == PlanningStrategy.ROUTER:
  68. self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool) or isinstance(t, DatasetMultiRetrieverTool)]
  69. agent = MultiDatasetRouterAgent.from_llm_and_tools(
  70. model_instance=self.configuration.model_instance,
  71. tools=self.configuration.tools,
  72. extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
  73. verbose=True
  74. )
  75. elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
  76. self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool) or isinstance(t, DatasetMultiRetrieverTool)]
  77. agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
  78. model_instance=self.configuration.model_instance,
  79. tools=self.configuration.tools,
  80. output_parser=StructuredChatOutputParser(),
  81. verbose=True
  82. )
  83. else:
  84. raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
  85. return agent
  86. def should_use_agent(self, query: str) -> bool:
  87. return self.agent.should_use_agent(query)
  88. def run(self, query: str) -> AgentExecuteResult:
  89. moderation_result = moderation.check_moderation(
  90. self.configuration.model_instance.model_provider,
  91. query
  92. )
  93. if not moderation_result:
  94. return AgentExecuteResult(
  95. output="I apologize for any confusion, but I'm an AI assistant to be helpful, harmless, and honest.",
  96. strategy=self.configuration.strategy,
  97. configuration=self.configuration
  98. )
  99. agent_executor = LCAgentExecutor.from_agent_and_tools(
  100. agent=self.agent,
  101. tools=self.configuration.tools,
  102. memory=self.configuration.memory,
  103. max_iterations=self.configuration.max_iterations,
  104. max_execution_time=self.configuration.max_execution_time,
  105. early_stopping_method=self.configuration.early_stopping_method,
  106. callbacks=self.configuration.callbacks
  107. )
  108. try:
  109. output = agent_executor.run(query)
  110. except LLMError as ex:
  111. raise ex
  112. except Exception as ex:
  113. logging.exception("agent_executor run failed")
  114. output = None
  115. return AgentExecuteResult(
  116. output=output,
  117. strategy=self.configuration.strategy,
  118. configuration=self.configuration
  119. )