| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 | import jsonimport loggingimport osfrom datetime import datetime, timedeltafrom langsmith import Clientfrom core.ops.base_trace_instance import BaseTraceInstancefrom core.ops.entities.config_entity import LangSmithConfigfrom core.ops.entities.trace_entity import (    BaseTraceInfo,    DatasetRetrievalTraceInfo,    GenerateNameTraceInfo,    MessageTraceInfo,    ModerationTraceInfo,    SuggestedQuestionTraceInfo,    ToolTraceInfo,    TraceTaskName,    WorkflowTraceInfo,)from core.ops.langsmith_trace.entities.langsmith_trace_entity import (    LangSmithRunModel,    LangSmithRunType,    LangSmithRunUpdateModel,)from core.ops.utils import filter_none_valuesfrom extensions.ext_database import dbfrom models.model import EndUser, MessageFilefrom models.workflow import WorkflowNodeExecutionlogger = logging.getLogger(__name__)class LangSmithDataTrace(BaseTraceInstance):    def __init__(        self,        langsmith_config: LangSmithConfig,    ):        super().__init__(langsmith_config)        self.langsmith_key = langsmith_config.api_key        self.project_name = langsmith_config.project        self.project_id = None        self.langsmith_client = Client(api_key=langsmith_config.api_key, api_url=langsmith_config.endpoint)        self.file_base_url = os.getenv("FILES_URL", "http://127.0.0.1:5001")    def trace(self, trace_info: BaseTraceInfo):        if isinstance(trace_info, WorkflowTraceInfo):            self.workflow_trace(trace_info)        if isinstance(trace_info, MessageTraceInfo):            self.message_trace(trace_info)        if isinstance(trace_info, ModerationTraceInfo):            self.moderation_trace(trace_info)        if isinstance(trace_info, SuggestedQuestionTraceInfo):            self.suggested_question_trace(trace_info)        if isinstance(trace_info, DatasetRetrievalTraceInfo):            self.dataset_retrieval_trace(trace_info)        if isinstance(trace_info, ToolTraceInfo):            self.tool_trace(trace_info)        if isinstance(trace_info, GenerateNameTraceInfo):            self.generate_name_trace(trace_info)    def workflow_trace(self, trace_info: WorkflowTraceInfo):        if trace_info.message_id:            message_run = LangSmithRunModel(                id=trace_info.message_id,                name=TraceTaskName.MESSAGE_TRACE.value,                inputs=trace_info.workflow_run_inputs,                outputs=trace_info.workflow_run_outputs,                run_type=LangSmithRunType.chain,                start_time=trace_info.start_time,                end_time=trace_info.end_time,                extra={                    "metadata": trace_info.metadata,                },                tags=["message", "workflow"],                error=trace_info.error,            )            self.add_run(message_run)        langsmith_run = LangSmithRunModel(            file_list=trace_info.file_list,            total_tokens=trace_info.total_tokens,            id=trace_info.workflow_app_log_id if trace_info.workflow_app_log_id else trace_info.workflow_run_id,            name=TraceTaskName.WORKFLOW_TRACE.value,            inputs=trace_info.workflow_run_inputs,            run_type=LangSmithRunType.tool,            start_time=trace_info.workflow_data.created_at,            end_time=trace_info.workflow_data.finished_at,            outputs=trace_info.workflow_run_outputs,            extra={                "metadata": trace_info.metadata,            },            error=trace_info.error,            tags=["workflow"],            parent_run_id=trace_info.message_id if trace_info.message_id else None,        )        self.add_run(langsmith_run)        # through workflow_run_id get all_nodes_execution        workflow_nodes_executions = (            db.session.query(                WorkflowNodeExecution.id,                WorkflowNodeExecution.tenant_id,                WorkflowNodeExecution.app_id,                WorkflowNodeExecution.title,                WorkflowNodeExecution.node_type,                WorkflowNodeExecution.status,                WorkflowNodeExecution.inputs,                WorkflowNodeExecution.outputs,                WorkflowNodeExecution.created_at,                WorkflowNodeExecution.elapsed_time,                WorkflowNodeExecution.process_data,                WorkflowNodeExecution.execution_metadata,            )            .filter(WorkflowNodeExecution.workflow_run_id == trace_info.workflow_run_id)            .all()        )        for node_execution in workflow_nodes_executions:            node_execution_id = node_execution.id            tenant_id = node_execution.tenant_id            app_id = node_execution.app_id            node_name = node_execution.title            node_type = node_execution.node_type            status = node_execution.status            if node_type == "llm":                inputs = (                    json.loads(node_execution.process_data).get("prompts", {}) if node_execution.process_data else {}                )            else:                inputs = json.loads(node_execution.inputs) if node_execution.inputs else {}            outputs = json.loads(node_execution.outputs) if node_execution.outputs else {}            created_at = node_execution.created_at if node_execution.created_at else datetime.now()            elapsed_time = node_execution.elapsed_time            finished_at = created_at + timedelta(seconds=elapsed_time)            execution_metadata = (                json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}            )            node_total_tokens = execution_metadata.get("total_tokens", 0)            metadata = json.loads(node_execution.execution_metadata) if node_execution.execution_metadata else {}            metadata.update(                {                    "workflow_run_id": trace_info.workflow_run_id,                    "node_execution_id": node_execution_id,                    "tenant_id": tenant_id,                    "app_id": app_id,                    "app_name": node_name,                    "node_type": node_type,                    "status": status,                }            )            process_data = json.loads(node_execution.process_data) if node_execution.process_data else {}            if process_data and process_data.get("model_mode") == "chat":                run_type = LangSmithRunType.llm            elif node_type == "knowledge-retrieval":                run_type = LangSmithRunType.retriever            else:                run_type = LangSmithRunType.tool            langsmith_run = LangSmithRunModel(                total_tokens=node_total_tokens,                name=node_type,                inputs=inputs,                run_type=run_type,                start_time=created_at,                end_time=finished_at,                outputs=outputs,                file_list=trace_info.file_list,                extra={                    "metadata": metadata,                },                parent_run_id=trace_info.workflow_app_log_id                if trace_info.workflow_app_log_id                else trace_info.workflow_run_id,                tags=["node_execution"],            )            self.add_run(langsmith_run)    def message_trace(self, trace_info: MessageTraceInfo):        # get message file data        file_list = trace_info.file_list        message_file_data: MessageFile = trace_info.message_file_data        file_url = f"{self.file_base_url}/{message_file_data.url}" if message_file_data else ""        file_list.append(file_url)        metadata = trace_info.metadata        message_data = trace_info.message_data        message_id = message_data.id        user_id = message_data.from_account_id        metadata["user_id"] = user_id        if message_data.from_end_user_id:            end_user_data: EndUser = (                db.session.query(EndUser).filter(EndUser.id == message_data.from_end_user_id).first()            )            if end_user_data is not None:                end_user_id = end_user_data.session_id                metadata["end_user_id"] = end_user_id        message_run = LangSmithRunModel(            input_tokens=trace_info.message_tokens,            output_tokens=trace_info.answer_tokens,            total_tokens=trace_info.total_tokens,            id=message_id,            name=TraceTaskName.MESSAGE_TRACE.value,            inputs=trace_info.inputs,            run_type=LangSmithRunType.chain,            start_time=trace_info.start_time,            end_time=trace_info.end_time,            outputs=message_data.answer,            extra={                "metadata": metadata,            },            tags=["message", str(trace_info.conversation_mode)],            error=trace_info.error,            file_list=file_list,        )        self.add_run(message_run)        # create llm run parented to message run        llm_run = LangSmithRunModel(            input_tokens=trace_info.message_tokens,            output_tokens=trace_info.answer_tokens,            total_tokens=trace_info.total_tokens,            name="llm",            inputs=trace_info.inputs,            run_type=LangSmithRunType.llm,            start_time=trace_info.start_time,            end_time=trace_info.end_time,            outputs=message_data.answer,            extra={                "metadata": metadata,            },            parent_run_id=message_id,            tags=["llm", str(trace_info.conversation_mode)],            error=trace_info.error,            file_list=file_list,        )        self.add_run(llm_run)    def moderation_trace(self, trace_info: ModerationTraceInfo):        langsmith_run = LangSmithRunModel(            name=TraceTaskName.MODERATION_TRACE.value,            inputs=trace_info.inputs,            outputs={                "action": trace_info.action,                "flagged": trace_info.flagged,                "preset_response": trace_info.preset_response,                "inputs": trace_info.inputs,            },            run_type=LangSmithRunType.tool,            extra={                "metadata": trace_info.metadata,            },            tags=["moderation"],            parent_run_id=trace_info.message_id,            start_time=trace_info.start_time or trace_info.message_data.created_at,            end_time=trace_info.end_time or trace_info.message_data.updated_at,        )        self.add_run(langsmith_run)    def suggested_question_trace(self, trace_info: SuggestedQuestionTraceInfo):        message_data = trace_info.message_data        suggested_question_run = LangSmithRunModel(            name=TraceTaskName.SUGGESTED_QUESTION_TRACE.value,            inputs=trace_info.inputs,            outputs=trace_info.suggested_question,            run_type=LangSmithRunType.tool,            extra={                "metadata": trace_info.metadata,            },            tags=["suggested_question"],            parent_run_id=trace_info.message_id,            start_time=trace_info.start_time or message_data.created_at,            end_time=trace_info.end_time or message_data.updated_at,        )        self.add_run(suggested_question_run)    def dataset_retrieval_trace(self, trace_info: DatasetRetrievalTraceInfo):        dataset_retrieval_run = LangSmithRunModel(            name=TraceTaskName.DATASET_RETRIEVAL_TRACE.value,            inputs=trace_info.inputs,            outputs={"documents": trace_info.documents},            run_type=LangSmithRunType.retriever,            extra={                "metadata": trace_info.metadata,            },            tags=["dataset_retrieval"],            parent_run_id=trace_info.message_id,            start_time=trace_info.start_time or trace_info.message_data.created_at,            end_time=trace_info.end_time or trace_info.message_data.updated_at,        )        self.add_run(dataset_retrieval_run)    def tool_trace(self, trace_info: ToolTraceInfo):        tool_run = LangSmithRunModel(            name=trace_info.tool_name,            inputs=trace_info.tool_inputs,            outputs=trace_info.tool_outputs,            run_type=LangSmithRunType.tool,            extra={                "metadata": trace_info.metadata,            },            tags=["tool", trace_info.tool_name],            parent_run_id=trace_info.message_id,            start_time=trace_info.start_time,            end_time=trace_info.end_time,            file_list=[trace_info.file_url],        )        self.add_run(tool_run)    def generate_name_trace(self, trace_info: GenerateNameTraceInfo):        name_run = LangSmithRunModel(            name=TraceTaskName.GENERATE_NAME_TRACE.value,            inputs=trace_info.inputs,            outputs=trace_info.outputs,            run_type=LangSmithRunType.tool,            extra={                "metadata": trace_info.metadata,            },            tags=["generate_name"],            start_time=trace_info.start_time or datetime.now(),            end_time=trace_info.end_time or datetime.now(),        )        self.add_run(name_run)    def add_run(self, run_data: LangSmithRunModel):        data = run_data.model_dump()        if self.project_id:            data["session_id"] = self.project_id        elif self.project_name:            data["session_name"] = self.project_name        data = filter_none_values(data)        try:            self.langsmith_client.create_run(**data)            logger.debug("LangSmith Run created successfully.")        except Exception as e:            raise ValueError(f"LangSmith Failed to create run: {str(e)}")    def update_run(self, update_run_data: LangSmithRunUpdateModel):        data = update_run_data.model_dump()        data = filter_none_values(data)        try:            self.langsmith_client.update_run(**data)            logger.debug("LangSmith Run updated successfully.")        except Exception as e:            raise ValueError(f"LangSmith Failed to update run: {str(e)}")    def api_check(self):        try:            random_project_name = f"test_project_{datetime.now().strftime('%Y%m%d%H%M%S')}"            self.langsmith_client.create_project(project_name=random_project_name)            self.langsmith_client.delete_project(project_name=random_project_name)            return True        except Exception as e:            logger.debug(f"LangSmith API check failed: {str(e)}")            raise ValueError(f"LangSmith API check failed: {str(e)}")
 |