| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 | 
							- import json
 
- from abc import ABC, abstractmethod
 
- from collections.abc import Generator
 
- from typing import Optional, Union
 
- from core.agent.base_agent_runner import BaseAgentRunner
 
- from core.agent.entities import AgentScratchpadUnit
 
- from core.agent.output_parser.cot_output_parser import CotAgentOutputParser
 
- from core.app.apps.base_app_queue_manager import PublishFrom
 
- from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
 
- from core.model_runtime.entities.message_entities import (
 
-     AssistantPromptMessage,
 
-     PromptMessage,
 
-     ToolPromptMessage,
 
-     UserPromptMessage,
 
- )
 
- from core.ops.ops_trace_manager import TraceQueueManager
 
- from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 
- from core.tools.entities.tool_entities import ToolInvokeMeta
 
- from core.tools.tool.tool import Tool
 
- from core.tools.tool_engine import ToolEngine
 
- from models.model import Message
 
- class CotAgentRunner(BaseAgentRunner, ABC):
 
-     _is_first_iteration = True
 
-     _ignore_observation_providers = ["wenxin"]
 
-     _historic_prompt_messages: list[PromptMessage] = None
 
-     _agent_scratchpad: list[AgentScratchpadUnit] = None
 
-     _instruction: str = None
 
-     _query: str = None
 
-     _prompt_messages_tools: list[PromptMessage] = None
 
-     def run(
 
-         self,
 
-         message: Message,
 
-         query: str,
 
-         inputs: dict[str, str],
 
-     ) -> Union[Generator, LLMResult]:
 
-         """
 
-         Run Cot agent application
 
-         """
 
-         app_generate_entity = self.application_generate_entity
 
-         self._repack_app_generate_entity(app_generate_entity)
 
-         self._init_react_state(query)
 
-         trace_manager = app_generate_entity.trace_manager
 
-         # check model mode
 
-         if "Observation" not in app_generate_entity.model_conf.stop:
 
-             if app_generate_entity.model_conf.provider not in self._ignore_observation_providers:
 
-                 app_generate_entity.model_conf.stop.append("Observation")
 
-         app_config = self.app_config
 
-         # init instruction
 
-         inputs = inputs or {}
 
-         instruction = app_config.prompt_template.simple_prompt_template
 
-         self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs)
 
-         iteration_step = 1
 
-         max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 
-         # convert tools into ModelRuntime Tool format
 
-         tool_instances, self._prompt_messages_tools = self._init_prompt_tools()
 
-         function_call_state = True
 
-         llm_usage = {"usage": None}
 
-         final_answer = ""
 
-         def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
 
-             if not final_llm_usage_dict["usage"]:
 
-                 final_llm_usage_dict["usage"] = usage
 
-             else:
 
-                 llm_usage = final_llm_usage_dict["usage"]
 
-                 llm_usage.prompt_tokens += usage.prompt_tokens
 
-                 llm_usage.completion_tokens += usage.completion_tokens
 
-                 llm_usage.prompt_price += usage.prompt_price
 
-                 llm_usage.completion_price += usage.completion_price
 
-                 llm_usage.total_price += usage.total_price
 
-         model_instance = self.model_instance
 
-         while function_call_state and iteration_step <= max_iteration_steps:
 
-             # continue to run until there is not any tool call
 
-             function_call_state = False
 
-             if iteration_step == max_iteration_steps:
 
-                 # the last iteration, remove all tools
 
-                 self._prompt_messages_tools = []
 
-             message_file_ids = []
 
-             agent_thought = self.create_agent_thought(
 
-                 message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
 
-             )
 
-             if iteration_step > 1:
 
-                 self.queue_manager.publish(
 
-                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                 )
 
-             # recalc llm max tokens
 
-             prompt_messages = self._organize_prompt_messages()
 
-             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 
-             # invoke model
 
-             chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm(
 
-                 prompt_messages=prompt_messages,
 
-                 model_parameters=app_generate_entity.model_conf.parameters,
 
-                 tools=[],
 
-                 stop=app_generate_entity.model_conf.stop,
 
-                 stream=True,
 
-                 user=self.user_id,
 
-                 callbacks=[],
 
-             )
 
-             # check llm result
 
-             if not chunks:
 
-                 raise ValueError("failed to invoke llm")
 
-             usage_dict = {}
 
-             react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict)
 
-             scratchpad = AgentScratchpadUnit(
 
-                 agent_response="",
 
-                 thought="",
 
-                 action_str="",
 
-                 observation="",
 
-                 action=None,
 
-             )
 
-             # publish agent thought if it's first iteration
 
-             if iteration_step == 1:
 
-                 self.queue_manager.publish(
 
-                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                 )
 
-             for chunk in react_chunks:
 
-                 if isinstance(chunk, AgentScratchpadUnit.Action):
 
-                     action = chunk
 
-                     # detect action
 
-                     scratchpad.agent_response += json.dumps(chunk.model_dump())
 
-                     scratchpad.action_str = json.dumps(chunk.model_dump())
 
-                     scratchpad.action = action
 
-                 else:
 
-                     scratchpad.agent_response += chunk
 
-                     scratchpad.thought += chunk
 
-                     yield LLMResultChunk(
 
-                         model=self.model_config.model,
 
-                         prompt_messages=prompt_messages,
 
-                         system_fingerprint="",
 
-                         delta=LLMResultChunkDelta(index=0, message=AssistantPromptMessage(content=chunk), usage=None),
 
-                     )
 
-             scratchpad.thought = scratchpad.thought.strip() or "I am thinking about how to help you"
 
-             self._agent_scratchpad.append(scratchpad)
 
-             # get llm usage
 
-             if "usage" in usage_dict:
 
-                 increase_usage(llm_usage, usage_dict["usage"])
 
-             else:
 
-                 usage_dict["usage"] = LLMUsage.empty_usage()
 
-             self.save_agent_thought(
 
-                 agent_thought=agent_thought,
 
-                 tool_name=scratchpad.action.action_name if scratchpad.action else "",
 
-                 tool_input={scratchpad.action.action_name: scratchpad.action.action_input} if scratchpad.action else {},
 
-                 tool_invoke_meta={},
 
-                 thought=scratchpad.thought,
 
-                 observation="",
 
-                 answer=scratchpad.agent_response,
 
-                 messages_ids=[],
 
-                 llm_usage=usage_dict["usage"],
 
-             )
 
-             if not scratchpad.is_final():
 
-                 self.queue_manager.publish(
 
-                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                 )
 
-             if not scratchpad.action:
 
-                 # failed to extract action, return final answer directly
 
-                 final_answer = ""
 
-             else:
 
-                 if scratchpad.action.action_name.lower() == "final answer":
 
-                     # action is final answer, return final answer directly
 
-                     try:
 
-                         if isinstance(scratchpad.action.action_input, dict):
 
-                             final_answer = json.dumps(scratchpad.action.action_input)
 
-                         elif isinstance(scratchpad.action.action_input, str):
 
-                             final_answer = scratchpad.action.action_input
 
-                         else:
 
-                             final_answer = f"{scratchpad.action.action_input}"
 
-                     except json.JSONDecodeError:
 
-                         final_answer = f"{scratchpad.action.action_input}"
 
-                 else:
 
-                     function_call_state = True
 
-                     # action is tool call, invoke tool
 
-                     tool_invoke_response, tool_invoke_meta = self._handle_invoke_action(
 
-                         action=scratchpad.action,
 
-                         tool_instances=tool_instances,
 
-                         message_file_ids=message_file_ids,
 
-                         trace_manager=trace_manager,
 
-                     )
 
-                     scratchpad.observation = tool_invoke_response
 
-                     scratchpad.agent_response = tool_invoke_response
 
-                     self.save_agent_thought(
 
-                         agent_thought=agent_thought,
 
-                         tool_name=scratchpad.action.action_name,
 
-                         tool_input={scratchpad.action.action_name: scratchpad.action.action_input},
 
-                         thought=scratchpad.thought,
 
-                         observation={scratchpad.action.action_name: tool_invoke_response},
 
-                         tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()},
 
-                         answer=scratchpad.agent_response,
 
-                         messages_ids=message_file_ids,
 
-                         llm_usage=usage_dict["usage"],
 
-                     )
 
-                     self.queue_manager.publish(
 
-                         QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                     )
 
-                 # update prompt tool message
 
-                 for prompt_tool in self._prompt_messages_tools:
 
-                     self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 
-             iteration_step += 1
 
-         yield LLMResultChunk(
 
-             model=model_instance.model,
 
-             prompt_messages=prompt_messages,
 
-             delta=LLMResultChunkDelta(
 
-                 index=0, message=AssistantPromptMessage(content=final_answer), usage=llm_usage["usage"]
 
-             ),
 
-             system_fingerprint="",
 
-         )
 
-         # save agent thought
 
-         self.save_agent_thought(
 
-             agent_thought=agent_thought,
 
-             tool_name="",
 
-             tool_input={},
 
-             tool_invoke_meta={},
 
-             thought=final_answer,
 
-             observation={},
 
-             answer=final_answer,
 
-             messages_ids=[],
 
-         )
 
-         self.update_db_variables(self.variables_pool, self.db_variables_pool)
 
-         # publish end event
 
-         self.queue_manager.publish(
 
-             QueueMessageEndEvent(
 
-                 llm_result=LLMResult(
 
-                     model=model_instance.model,
 
-                     prompt_messages=prompt_messages,
 
-                     message=AssistantPromptMessage(content=final_answer),
 
-                     usage=llm_usage["usage"] or LLMUsage.empty_usage(),
 
-                     system_fingerprint="",
 
-                 )
 
-             ),
 
-             PublishFrom.APPLICATION_MANAGER,
 
-         )
 
-     def _handle_invoke_action(
 
-         self,
 
-         action: AgentScratchpadUnit.Action,
 
-         tool_instances: dict[str, Tool],
 
-         message_file_ids: list[str],
 
-         trace_manager: Optional[TraceQueueManager] = None,
 
-     ) -> tuple[str, ToolInvokeMeta]:
 
-         """
 
-         handle invoke action
 
-         :param action: action
 
-         :param tool_instances: tool instances
 
-         :param message_file_ids: message file ids
 
-         :param trace_manager: trace manager
 
-         :return: observation, meta
 
-         """
 
-         # action is tool call, invoke tool
 
-         tool_call_name = action.action_name
 
-         tool_call_args = action.action_input
 
-         tool_instance = tool_instances.get(tool_call_name)
 
-         if not tool_instance:
 
-             answer = f"there is not a tool named {tool_call_name}"
 
-             return answer, ToolInvokeMeta.error_instance(answer)
 
-         if isinstance(tool_call_args, str):
 
-             try:
 
-                 tool_call_args = json.loads(tool_call_args)
 
-             except json.JSONDecodeError:
 
-                 pass
 
-         # invoke tool
 
-         tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 
-             tool=tool_instance,
 
-             tool_parameters=tool_call_args,
 
-             user_id=self.user_id,
 
-             tenant_id=self.tenant_id,
 
-             message=self.message,
 
-             invoke_from=self.application_generate_entity.invoke_from,
 
-             agent_tool_callback=self.agent_callback,
 
-             trace_manager=trace_manager,
 
-         )
 
-         # publish files
 
-         for message_file_id, save_as in message_files:
 
-             if save_as:
 
-                 self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
 
-             # publish message file
 
-             self.queue_manager.publish(
 
-                 QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
 
-             )
 
-             # add message file ids
 
-             message_file_ids.append(message_file_id)
 
-         return tool_invoke_response, tool_invoke_meta
 
-     def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action:
 
-         """
 
-         convert dict to action
 
-         """
 
-         return AgentScratchpadUnit.Action(action_name=action["action"], action_input=action["action_input"])
 
-     def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str:
 
-         """
 
-         fill in inputs from external data tools
 
-         """
 
-         for key, value in inputs.items():
 
-             try:
 
-                 instruction = instruction.replace(f"{{{{{key}}}}}", str(value))
 
-             except Exception as e:
 
-                 continue
 
-         return instruction
 
-     def _init_react_state(self, query) -> None:
 
-         """
 
-         init agent scratchpad
 
-         """
 
-         self._query = query
 
-         self._agent_scratchpad = []
 
-         self._historic_prompt_messages = self._organize_historic_prompt_messages()
 
-     @abstractmethod
 
-     def _organize_prompt_messages(self) -> list[PromptMessage]:
 
-         """
 
-         organize prompt messages
 
-         """
 
-     def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str:
 
-         """
 
-         format assistant message
 
-         """
 
-         message = ""
 
-         for scratchpad in agent_scratchpad:
 
-             if scratchpad.is_final():
 
-                 message += f"Final Answer: {scratchpad.agent_response}"
 
-             else:
 
-                 message += f"Thought: {scratchpad.thought}\n\n"
 
-                 if scratchpad.action_str:
 
-                     message += f"Action: {scratchpad.action_str}\n\n"
 
-                 if scratchpad.observation:
 
-                     message += f"Observation: {scratchpad.observation}\n\n"
 
-         return message
 
-     def _organize_historic_prompt_messages(
 
-         self, current_session_messages: Optional[list[PromptMessage]] = None
 
-     ) -> list[PromptMessage]:
 
-         """
 
-         organize historic prompt messages
 
-         """
 
-         result: list[PromptMessage] = []
 
-         scratchpads: list[AgentScratchpadUnit] = []
 
-         current_scratchpad: AgentScratchpadUnit = None
 
-         for message in self.history_prompt_messages:
 
-             if isinstance(message, AssistantPromptMessage):
 
-                 if not current_scratchpad:
 
-                     current_scratchpad = AgentScratchpadUnit(
 
-                         agent_response=message.content,
 
-                         thought=message.content or "I am thinking about how to help you",
 
-                         action_str="",
 
-                         action=None,
 
-                         observation=None,
 
-                     )
 
-                     scratchpads.append(current_scratchpad)
 
-                 if message.tool_calls:
 
-                     try:
 
-                         current_scratchpad.action = AgentScratchpadUnit.Action(
 
-                             action_name=message.tool_calls[0].function.name,
 
-                             action_input=json.loads(message.tool_calls[0].function.arguments),
 
-                         )
 
-                         current_scratchpad.action_str = json.dumps(current_scratchpad.action.to_dict())
 
-                     except:
 
-                         pass
 
-             elif isinstance(message, ToolPromptMessage):
 
-                 if current_scratchpad:
 
-                     current_scratchpad.observation = message.content
 
-             elif isinstance(message, UserPromptMessage):
 
-                 if scratchpads:
 
-                     result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
 
-                     scratchpads = []
 
-                     current_scratchpad = None
 
-                 result.append(message)
 
-         if scratchpads:
 
-             result.append(AssistantPromptMessage(content=self._format_assistant_message(scratchpads)))
 
-         historic_prompts = AgentHistoryPromptTransform(
 
-             model_config=self.model_config,
 
-             prompt_messages=current_session_messages or [],
 
-             history_messages=result,
 
-             memory=self.memory,
 
-         ).get_prompt()
 
-         return historic_prompts
 
 
  |