builtin_tool.py 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. from core.model_runtime.entities.llm_entities import LLMResult
  2. from core.model_runtime.entities.message_entities import PromptMessage, SystemPromptMessage, UserPromptMessage
  3. from core.tools.model.tool_model_manager import ToolModelManager
  4. from core.tools.tool.tool import Tool
  5. from core.tools.utils.web_reader_tool import get_url
  6. _SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
  7. and you can quickly aimed at the main point of an webpage and reproduce it in your own words but
  8. retain the original meaning and keep the key points.
  9. however, the text you got is too long, what you got is possible a part of the text.
  10. Please summarize the text you got.
  11. """
  12. class BuiltinTool(Tool):
  13. """
  14. Builtin tool
  15. :param meta: the meta data of a tool call processing
  16. """
  17. def invoke_model(
  18. self, user_id: str, prompt_messages: list[PromptMessage], stop: list[str]
  19. ) -> LLMResult:
  20. """
  21. invoke model
  22. :param model_config: the model config
  23. :param prompt_messages: the prompt messages
  24. :param stop: the stop words
  25. :return: the model result
  26. """
  27. # invoke model
  28. return ToolModelManager.invoke(
  29. user_id=user_id,
  30. tenant_id=self.runtime.tenant_id,
  31. tool_type='builtin',
  32. tool_name=self.identity.name,
  33. prompt_messages=prompt_messages,
  34. )
  35. def get_max_tokens(self) -> int:
  36. """
  37. get max tokens
  38. :param model_config: the model config
  39. :return: the max tokens
  40. """
  41. return ToolModelManager.get_max_llm_context_tokens(
  42. tenant_id=self.runtime.tenant_id,
  43. )
  44. def get_prompt_tokens(self, prompt_messages: list[PromptMessage]) -> int:
  45. """
  46. get prompt tokens
  47. :param prompt_messages: the prompt messages
  48. :return: the tokens
  49. """
  50. return ToolModelManager.calculate_tokens(
  51. tenant_id=self.runtime.tenant_id,
  52. prompt_messages=prompt_messages
  53. )
  54. def summary(self, user_id: str, content: str) -> str:
  55. max_tokens = self.get_max_tokens()
  56. if self.get_prompt_tokens(prompt_messages=[
  57. UserPromptMessage(content=content)
  58. ]) < max_tokens * 0.6:
  59. return content
  60. def get_prompt_tokens(content: str) -> int:
  61. return self.get_prompt_tokens(prompt_messages=[
  62. SystemPromptMessage(content=_SUMMARY_PROMPT),
  63. UserPromptMessage(content=content)
  64. ])
  65. def summarize(content: str) -> str:
  66. summary = self.invoke_model(user_id=user_id, prompt_messages=[
  67. SystemPromptMessage(content=_SUMMARY_PROMPT),
  68. UserPromptMessage(content=content)
  69. ], stop=[])
  70. return summary.message.content
  71. lines = content.split('\n')
  72. new_lines = []
  73. # split long line into multiple lines
  74. for i in range(len(lines)):
  75. line = lines[i]
  76. if not line.strip():
  77. continue
  78. if len(line) < max_tokens * 0.5:
  79. new_lines.append(line)
  80. elif get_prompt_tokens(line) > max_tokens * 0.7:
  81. while get_prompt_tokens(line) > max_tokens * 0.7:
  82. new_lines.append(line[:int(max_tokens * 0.5)])
  83. line = line[int(max_tokens * 0.5):]
  84. new_lines.append(line)
  85. else:
  86. new_lines.append(line)
  87. # merge lines into messages with max tokens
  88. messages: list[str] = []
  89. for i in new_lines:
  90. if len(messages) == 0:
  91. messages.append(i)
  92. else:
  93. if len(messages[-1]) + len(i) < max_tokens * 0.5:
  94. messages[-1] += i
  95. if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
  96. messages.append(i)
  97. else:
  98. messages[-1] += i
  99. summaries = []
  100. for i in range(len(messages)):
  101. message = messages[i]
  102. summary = summarize(message)
  103. summaries.append(summary)
  104. result = '\n'.join(summaries)
  105. if self.get_prompt_tokens(prompt_messages=[
  106. UserPromptMessage(content=result)
  107. ]) > max_tokens * 0.7:
  108. return self.summary(user_id=user_id, content=result)
  109. return result
  110. def get_url(self, url: str, user_agent: str = None) -> str:
  111. """
  112. get url
  113. """
  114. return get_url(url, user_agent=user_agent)