| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 | import threadingfrom typing import Optionalfrom flask import Flask, current_appfrom core.rag.data_post_processor.data_post_processor import DataPostProcessorfrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.datasource.vdb.vector_factory import Vectorfrom core.rag.rerank.constants.rerank_mode import RerankModefrom core.rag.retrieval.retrival_methods import RetrievalMethodfrom extensions.ext_database import dbfrom models.dataset import Datasetdefault_retrieval_model = {    'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,    'reranking_enable': False,    'reranking_model': {        'reranking_provider_name': '',        'reranking_model_name': ''    },    'top_k': 2,    'score_threshold_enabled': False}class RetrievalService:    @classmethod    def retrieve(cls, retrival_method: str, dataset_id: str, query: str,                 top_k: int, score_threshold: Optional[float] = .0,                 reranking_model: Optional[dict] = None, reranking_mode: Optional[str] = 'reranking_model',                 weights: Optional[dict] = None):        dataset = db.session.query(Dataset).filter(            Dataset.id == dataset_id        ).first()        if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:            return []        all_documents = []        threads = []        exceptions = []        # retrieval_model source with keyword        if retrival_method == 'keyword_search':            keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={                'flask_app': current_app._get_current_object(),                'dataset_id': dataset_id,                'query': query,                'top_k': top_k,                'all_documents': all_documents,                'exceptions': exceptions,            })            threads.append(keyword_thread)            keyword_thread.start()        # retrieval_model source with semantic        if RetrievalMethod.is_support_semantic_search(retrival_method):            embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={                'flask_app': current_app._get_current_object(),                'dataset_id': dataset_id,                'query': query,                'top_k': top_k,                'score_threshold': score_threshold,                'reranking_model': reranking_model,                'all_documents': all_documents,                'retrival_method': retrival_method,                'exceptions': exceptions,            })            threads.append(embedding_thread)            embedding_thread.start()        # retrieval source with full text        if RetrievalMethod.is_support_fulltext_search(retrival_method):            full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={                'flask_app': current_app._get_current_object(),                'dataset_id': dataset_id,                'query': query,                'retrival_method': retrival_method,                'score_threshold': score_threshold,                'top_k': top_k,                'reranking_model': reranking_model,                'all_documents': all_documents,                'exceptions': exceptions,            })            threads.append(full_text_index_thread)            full_text_index_thread.start()        for thread in threads:            thread.join()        if exceptions:            exception_message = ';\n'.join(exceptions)            raise Exception(exception_message)        if retrival_method == RetrievalMethod.HYBRID_SEARCH.value:            data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_mode,                                                    reranking_model, weights, False)            all_documents = data_post_processor.invoke(                query=query,                documents=all_documents,                score_threshold=score_threshold,                top_n=top_k            )        return all_documents    @classmethod    def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,                       top_k: int, all_documents: list, exceptions: list):        with flask_app.app_context():            try:                dataset = db.session.query(Dataset).filter(                    Dataset.id == dataset_id                ).first()                keyword = Keyword(                    dataset=dataset                )                documents = keyword.search(                    cls.escape_query_for_search(query),                    top_k=top_k                )                all_documents.extend(documents)            except Exception as e:                exceptions.append(str(e))    @classmethod    def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,                         top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                         all_documents: list, retrival_method: str, exceptions: list):        with flask_app.app_context():            try:                dataset = db.session.query(Dataset).filter(                    Dataset.id == dataset_id                ).first()                vector = Vector(                    dataset=dataset                )                documents = vector.search_by_vector(                    cls.escape_query_for_search(query),                    search_type='similarity_score_threshold',                    top_k=top_k,                    score_threshold=score_threshold,                    filter={                        'group_id': [dataset.id]                    }                )                if documents:                    if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH.value:                        data_post_processor = DataPostProcessor(str(dataset.tenant_id),                                                                RerankMode.RERANKING_MODEL.value,                                                                reranking_model, None, False)                        all_documents.extend(data_post_processor.invoke(                            query=query,                            documents=documents,                            score_threshold=score_threshold,                            top_n=len(documents)                        ))                    else:                        all_documents.extend(documents)            except Exception as e:                exceptions.append(str(e))    @classmethod    def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,                               top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                               all_documents: list, retrival_method: str, exceptions: list):        with flask_app.app_context():            try:                dataset = db.session.query(Dataset).filter(                    Dataset.id == dataset_id                ).first()                vector_processor = Vector(                    dataset=dataset,                )                documents = vector_processor.search_by_full_text(                    cls.escape_query_for_search(query),                    top_k=top_k                )                if documents:                    if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH.value:                        data_post_processor = DataPostProcessor(str(dataset.tenant_id),                                                                RerankMode.RERANKING_MODEL.value,                                                                reranking_model, None, False)                        all_documents.extend(data_post_processor.invoke(                            query=query,                            documents=documents,                            score_threshold=score_threshold,                            top_n=len(documents)                        ))                    else:                        all_documents.extend(documents)            except Exception as e:                exceptions.append(str(e))    @staticmethod    def escape_query_for_search(query: str) -> str:        return query.replace('"', '\\"')
 |