batch_create_segment_to_index_task.py 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. from typing import Optional, List
  6. import click
  7. from celery import shared_task
  8. from sqlalchemy import func
  9. from werkzeug.exceptions import NotFound
  10. from core.index.index import IndexBuilder
  11. from core.indexing_runner import IndexingRunner
  12. from core.model_providers.model_factory import ModelFactory
  13. from extensions.ext_database import db
  14. from extensions.ext_redis import redis_client
  15. from libs import helper
  16. from models.dataset import DocumentSegment, Dataset, Document
  17. @shared_task(queue='dataset')
  18. def batch_create_segment_to_index_task(job_id: str, content: List, dataset_id: str, document_id: str,
  19. tenant_id: str, user_id: str):
  20. """
  21. Async batch create segment to index
  22. :param job_id:
  23. :param content:
  24. :param dataset_id:
  25. :param document_id:
  26. :param tenant_id:
  27. :param user_id:
  28. Usage: batch_create_segment_to_index_task.delay(segment_id)
  29. """
  30. logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
  31. start_at = time.perf_counter()
  32. indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
  33. try:
  34. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  35. if not dataset:
  36. raise ValueError('Dataset not exist.')
  37. dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
  38. if not dataset_document:
  39. raise ValueError('Document not exist.')
  40. if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
  41. raise ValueError('Document is not available.')
  42. document_segments = []
  43. for segment in content:
  44. content = segment['content']
  45. doc_id = str(uuid.uuid4())
  46. segment_hash = helper.generate_text_hash(content)
  47. embedding_model = ModelFactory.get_embedding_model(
  48. tenant_id=dataset.tenant_id,
  49. model_provider_name=dataset.embedding_model_provider,
  50. model_name=dataset.embedding_model
  51. )
  52. # calc embedding use tokens
  53. tokens = embedding_model.get_num_tokens(content)
  54. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  55. DocumentSegment.document_id == dataset_document.id
  56. ).scalar()
  57. segment_document = DocumentSegment(
  58. tenant_id=tenant_id,
  59. dataset_id=dataset_id,
  60. document_id=document_id,
  61. index_node_id=doc_id,
  62. index_node_hash=segment_hash,
  63. position=max_position + 1 if max_position else 1,
  64. content=content,
  65. word_count=len(content),
  66. tokens=tokens,
  67. created_by=user_id,
  68. indexing_at=datetime.datetime.utcnow(),
  69. status='completed',
  70. completed_at=datetime.datetime.utcnow()
  71. )
  72. if dataset_document.doc_form == 'qa_model':
  73. segment_document.answer = segment['answer']
  74. db.session.add(segment_document)
  75. document_segments.append(segment_document)
  76. # add index to db
  77. indexing_runner = IndexingRunner()
  78. indexing_runner.batch_add_segments(document_segments, dataset)
  79. db.session.commit()
  80. redis_client.setex(indexing_cache_key, 600, 'completed')
  81. end_at = time.perf_counter()
  82. logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
  83. except Exception as e:
  84. logging.exception("Segments batch created index failed:{}".format(str(e)))
  85. redis_client.setex(indexing_cache_key, 600, 'error')