dataset_service.py 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. import uuid
  7. from typing import Optional, List
  8. from flask import current_app
  9. from sqlalchemy import func
  10. from core.index.index import IndexBuilder
  11. from core.model_providers.model_factory import ModelFactory
  12. from extensions.ext_redis import redis_client
  13. from flask_login import current_user
  14. from events.dataset_event import dataset_was_deleted
  15. from events.document_event import document_was_deleted
  16. from extensions.ext_database import db
  17. from libs import helper
  18. from models.account import Account
  19. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
  20. from models.model import UploadFile
  21. from models.source import DataSourceBinding
  22. from services.errors.account import NoPermissionError
  23. from services.errors.dataset import DatasetNameDuplicateError
  24. from services.errors.document import DocumentIndexingError
  25. from services.errors.file import FileNotExistsError
  26. from services.vector_service import VectorService
  27. from tasks.clean_notion_document_task import clean_notion_document_task
  28. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  29. from tasks.document_indexing_task import document_indexing_task
  30. from tasks.document_indexing_update_task import document_indexing_update_task
  31. from tasks.create_segment_to_index_task import create_segment_to_index_task
  32. from tasks.update_segment_index_task import update_segment_index_task
  33. from tasks.recover_document_indexing_task import recover_document_indexing_task
  34. from tasks.update_segment_keyword_index_task import update_segment_keyword_index_task
  35. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  36. class DatasetService:
  37. @staticmethod
  38. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  39. if user:
  40. permission_filter = db.or_(Dataset.created_by == user.id,
  41. Dataset.permission == 'all_team_members')
  42. else:
  43. permission_filter = Dataset.permission == 'all_team_members'
  44. datasets = Dataset.query.filter(
  45. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  46. .order_by(Dataset.created_at.desc()) \
  47. .paginate(
  48. page=page,
  49. per_page=per_page,
  50. max_per_page=100,
  51. error_out=False
  52. )
  53. return datasets.items, datasets.total
  54. @staticmethod
  55. def get_process_rules(dataset_id):
  56. # get the latest process rule
  57. dataset_process_rule = db.session.query(DatasetProcessRule). \
  58. filter(DatasetProcessRule.dataset_id == dataset_id). \
  59. order_by(DatasetProcessRule.created_at.desc()). \
  60. limit(1). \
  61. one_or_none()
  62. if dataset_process_rule:
  63. mode = dataset_process_rule.mode
  64. rules = dataset_process_rule.rules_dict
  65. else:
  66. mode = DocumentService.DEFAULT_RULES['mode']
  67. rules = DocumentService.DEFAULT_RULES['rules']
  68. return {
  69. 'mode': mode,
  70. 'rules': rules
  71. }
  72. @staticmethod
  73. def get_datasets_by_ids(ids, tenant_id):
  74. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  75. Dataset.tenant_id == tenant_id).paginate(
  76. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  77. return datasets.items, datasets.total
  78. @staticmethod
  79. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  80. # check if dataset name already exists
  81. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  82. raise DatasetNameDuplicateError(
  83. f'Dataset with name {name} already exists.')
  84. embedding_model = ModelFactory.get_embedding_model(
  85. tenant_id=current_user.current_tenant_id
  86. )
  87. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  88. # dataset = Dataset(name=name, provider=provider, config=config)
  89. dataset.created_by = account.id
  90. dataset.updated_by = account.id
  91. dataset.tenant_id = tenant_id
  92. dataset.embedding_model_provider = embedding_model.model_provider.provider_name
  93. dataset.embedding_model = embedding_model.name
  94. db.session.add(dataset)
  95. db.session.commit()
  96. return dataset
  97. @staticmethod
  98. def get_dataset(dataset_id):
  99. dataset = Dataset.query.filter_by(
  100. id=dataset_id
  101. ).first()
  102. if dataset is None:
  103. return None
  104. else:
  105. return dataset
  106. @staticmethod
  107. def update_dataset(dataset_id, data, user):
  108. dataset = DatasetService.get_dataset(dataset_id)
  109. DatasetService.check_dataset_permission(dataset, user)
  110. if dataset.indexing_technique != data['indexing_technique']:
  111. # if update indexing_technique
  112. if data['indexing_technique'] == 'economy':
  113. deal_dataset_vector_index_task.delay(dataset_id, 'remove')
  114. elif data['indexing_technique'] == 'high_quality':
  115. deal_dataset_vector_index_task.delay(dataset_id, 'add')
  116. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  117. filtered_data['updated_by'] = user.id
  118. filtered_data['updated_at'] = datetime.datetime.now()
  119. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  120. db.session.commit()
  121. return dataset
  122. @staticmethod
  123. def delete_dataset(dataset_id, user):
  124. # todo: cannot delete dataset if it is being processed
  125. dataset = DatasetService.get_dataset(dataset_id)
  126. if dataset is None:
  127. return False
  128. DatasetService.check_dataset_permission(dataset, user)
  129. dataset_was_deleted.send(dataset)
  130. db.session.delete(dataset)
  131. db.session.commit()
  132. return True
  133. @staticmethod
  134. def check_dataset_permission(dataset, user):
  135. if dataset.tenant_id != user.current_tenant_id:
  136. logging.debug(
  137. f'User {user.id} does not have permission to access dataset {dataset.id}')
  138. raise NoPermissionError(
  139. 'You do not have permission to access this dataset.')
  140. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  141. logging.debug(
  142. f'User {user.id} does not have permission to access dataset {dataset.id}')
  143. raise NoPermissionError(
  144. 'You do not have permission to access this dataset.')
  145. @staticmethod
  146. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  147. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  148. .order_by(db.desc(DatasetQuery.created_at)) \
  149. .paginate(
  150. page=page, per_page=per_page, max_per_page=100, error_out=False
  151. )
  152. return dataset_queries.items, dataset_queries.total
  153. @staticmethod
  154. def get_related_apps(dataset_id: str):
  155. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  156. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  157. class DocumentService:
  158. DEFAULT_RULES = {
  159. 'mode': 'custom',
  160. 'rules': {
  161. 'pre_processing_rules': [
  162. {'id': 'remove_extra_spaces', 'enabled': True},
  163. {'id': 'remove_urls_emails', 'enabled': False}
  164. ],
  165. 'segmentation': {
  166. 'delimiter': '\n',
  167. 'max_tokens': 500
  168. }
  169. }
  170. }
  171. DOCUMENT_METADATA_SCHEMA = {
  172. "book": {
  173. "title": str,
  174. "language": str,
  175. "author": str,
  176. "publisher": str,
  177. "publication_date": str,
  178. "isbn": str,
  179. "category": str,
  180. },
  181. "web_page": {
  182. "title": str,
  183. "url": str,
  184. "language": str,
  185. "publish_date": str,
  186. "author/publisher": str,
  187. "topic/keywords": str,
  188. "description": str,
  189. },
  190. "paper": {
  191. "title": str,
  192. "language": str,
  193. "author": str,
  194. "publish_date": str,
  195. "journal/conference_name": str,
  196. "volume/issue/page_numbers": str,
  197. "doi": str,
  198. "topic/keywords": str,
  199. "abstract": str,
  200. },
  201. "social_media_post": {
  202. "platform": str,
  203. "author/username": str,
  204. "publish_date": str,
  205. "post_url": str,
  206. "topic/tags": str,
  207. },
  208. "wikipedia_entry": {
  209. "title": str,
  210. "language": str,
  211. "web_page_url": str,
  212. "last_edit_date": str,
  213. "editor/contributor": str,
  214. "summary/introduction": str,
  215. },
  216. "personal_document": {
  217. "title": str,
  218. "author": str,
  219. "creation_date": str,
  220. "last_modified_date": str,
  221. "document_type": str,
  222. "tags/category": str,
  223. },
  224. "business_document": {
  225. "title": str,
  226. "author": str,
  227. "creation_date": str,
  228. "last_modified_date": str,
  229. "document_type": str,
  230. "department/team": str,
  231. },
  232. "im_chat_log": {
  233. "chat_platform": str,
  234. "chat_participants/group_name": str,
  235. "start_date": str,
  236. "end_date": str,
  237. "summary": str,
  238. },
  239. "synced_from_notion": {
  240. "title": str,
  241. "language": str,
  242. "author/creator": str,
  243. "creation_date": str,
  244. "last_modified_date": str,
  245. "notion_page_link": str,
  246. "category/tags": str,
  247. "description": str,
  248. },
  249. "synced_from_github": {
  250. "repository_name": str,
  251. "repository_description": str,
  252. "repository_owner/organization": str,
  253. "code_filename": str,
  254. "code_file_path": str,
  255. "programming_language": str,
  256. "github_link": str,
  257. "open_source_license": str,
  258. "commit_date": str,
  259. "commit_author": str,
  260. },
  261. "others": dict
  262. }
  263. @staticmethod
  264. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  265. document = db.session.query(Document).filter(
  266. Document.id == document_id,
  267. Document.dataset_id == dataset_id
  268. ).first()
  269. return document
  270. @staticmethod
  271. def get_document_by_id(document_id: str) -> Optional[Document]:
  272. document = db.session.query(Document).filter(
  273. Document.id == document_id
  274. ).first()
  275. return document
  276. @staticmethod
  277. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  278. documents = db.session.query(Document).filter(
  279. Document.dataset_id == dataset_id,
  280. Document.enabled == True
  281. ).all()
  282. return documents
  283. @staticmethod
  284. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  285. documents = db.session.query(Document).filter(
  286. Document.batch == batch,
  287. Document.dataset_id == dataset_id,
  288. Document.tenant_id == current_user.current_tenant_id
  289. ).all()
  290. return documents
  291. @staticmethod
  292. def get_document_file_detail(file_id: str):
  293. file_detail = db.session.query(UploadFile). \
  294. filter(UploadFile.id == file_id). \
  295. one_or_none()
  296. return file_detail
  297. @staticmethod
  298. def check_archived(document):
  299. if document.archived:
  300. return True
  301. else:
  302. return False
  303. @staticmethod
  304. def delete_document(document):
  305. if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
  306. raise DocumentIndexingError()
  307. # trigger document_was_deleted signal
  308. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  309. db.session.delete(document)
  310. db.session.commit()
  311. @staticmethod
  312. def pause_document(document):
  313. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  314. raise DocumentIndexingError()
  315. # update document to be paused
  316. document.is_paused = True
  317. document.paused_by = current_user.id
  318. document.paused_at = datetime.datetime.utcnow()
  319. db.session.add(document)
  320. db.session.commit()
  321. # set document paused flag
  322. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  323. redis_client.setnx(indexing_cache_key, "True")
  324. @staticmethod
  325. def recover_document(document):
  326. if not document.is_paused:
  327. raise DocumentIndexingError()
  328. # update document to be recover
  329. document.is_paused = False
  330. document.paused_by = None
  331. document.paused_at = None
  332. db.session.add(document)
  333. db.session.commit()
  334. # delete paused flag
  335. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  336. redis_client.delete(indexing_cache_key)
  337. # trigger async task
  338. recover_document_indexing_task.delay(document.dataset_id, document.id)
  339. @staticmethod
  340. def get_documents_position(dataset_id):
  341. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  342. if document:
  343. return document.position + 1
  344. else:
  345. return 1
  346. @staticmethod
  347. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  348. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  349. created_from: str = 'web'):
  350. # check document limit
  351. if current_app.config['EDITION'] == 'CLOUD':
  352. documents_count = DocumentService.get_tenant_documents_count()
  353. tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
  354. if documents_count > tenant_document_count:
  355. raise ValueError(f"over document limit {tenant_document_count}.")
  356. # if dataset is empty, update dataset data_source_type
  357. if not dataset.data_source_type:
  358. dataset.data_source_type = document_data["data_source"]["type"]
  359. db.session.commit()
  360. if not dataset.indexing_technique:
  361. if 'indexing_technique' not in document_data \
  362. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  363. raise ValueError("Indexing technique is required")
  364. dataset.indexing_technique = document_data["indexing_technique"]
  365. documents = []
  366. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  367. if 'original_document_id' in document_data and document_data["original_document_id"]:
  368. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  369. documents.append(document)
  370. else:
  371. # save process rule
  372. if not dataset_process_rule:
  373. process_rule = document_data["process_rule"]
  374. if process_rule["mode"] == "custom":
  375. dataset_process_rule = DatasetProcessRule(
  376. dataset_id=dataset.id,
  377. mode=process_rule["mode"],
  378. rules=json.dumps(process_rule["rules"]),
  379. created_by=account.id
  380. )
  381. elif process_rule["mode"] == "automatic":
  382. dataset_process_rule = DatasetProcessRule(
  383. dataset_id=dataset.id,
  384. mode=process_rule["mode"],
  385. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  386. created_by=account.id
  387. )
  388. db.session.add(dataset_process_rule)
  389. db.session.commit()
  390. position = DocumentService.get_documents_position(dataset.id)
  391. document_ids = []
  392. if document_data["data_source"]["type"] == "upload_file":
  393. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  394. for file_id in upload_file_list:
  395. file = db.session.query(UploadFile).filter(
  396. UploadFile.tenant_id == dataset.tenant_id,
  397. UploadFile.id == file_id
  398. ).first()
  399. # raise error if file not found
  400. if not file:
  401. raise FileNotExistsError()
  402. file_name = file.name
  403. data_source_info = {
  404. "upload_file_id": file_id,
  405. }
  406. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  407. document_data["data_source"]["type"],
  408. document_data["doc_form"],
  409. document_data["doc_language"],
  410. data_source_info, created_from, position,
  411. account, file_name, batch)
  412. db.session.add(document)
  413. db.session.flush()
  414. document_ids.append(document.id)
  415. documents.append(document)
  416. position += 1
  417. elif document_data["data_source"]["type"] == "notion_import":
  418. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  419. exist_page_ids = []
  420. exist_document = dict()
  421. documents = Document.query.filter_by(
  422. dataset_id=dataset.id,
  423. tenant_id=current_user.current_tenant_id,
  424. data_source_type='notion_import',
  425. enabled=True
  426. ).all()
  427. if documents:
  428. for document in documents:
  429. data_source_info = json.loads(document.data_source_info)
  430. exist_page_ids.append(data_source_info['notion_page_id'])
  431. exist_document[data_source_info['notion_page_id']] = document.id
  432. for notion_info in notion_info_list:
  433. workspace_id = notion_info['workspace_id']
  434. data_source_binding = DataSourceBinding.query.filter(
  435. db.and_(
  436. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  437. DataSourceBinding.provider == 'notion',
  438. DataSourceBinding.disabled == False,
  439. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  440. )
  441. ).first()
  442. if not data_source_binding:
  443. raise ValueError('Data source binding not found.')
  444. for page in notion_info['pages']:
  445. if page['page_id'] not in exist_page_ids:
  446. data_source_info = {
  447. "notion_workspace_id": workspace_id,
  448. "notion_page_id": page['page_id'],
  449. "notion_page_icon": page['page_icon'],
  450. "type": page['type']
  451. }
  452. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  453. document_data["data_source"]["type"],
  454. document_data["doc_form"],
  455. document_data["doc_language"],
  456. data_source_info, created_from, position,
  457. account, page['page_name'], batch)
  458. db.session.add(document)
  459. db.session.flush()
  460. document_ids.append(document.id)
  461. documents.append(document)
  462. position += 1
  463. else:
  464. exist_document.pop(page['page_id'])
  465. # delete not selected documents
  466. if len(exist_document) > 0:
  467. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  468. db.session.commit()
  469. # trigger async task
  470. document_indexing_task.delay(dataset.id, document_ids)
  471. return documents, batch
  472. @staticmethod
  473. def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  474. document_language: str, data_source_info: dict, created_from: str, position: int,
  475. account: Account,
  476. name: str, batch: str):
  477. document = Document(
  478. tenant_id=dataset.tenant_id,
  479. dataset_id=dataset.id,
  480. position=position,
  481. data_source_type=data_source_type,
  482. data_source_info=json.dumps(data_source_info),
  483. dataset_process_rule_id=process_rule_id,
  484. batch=batch,
  485. name=name,
  486. created_from=created_from,
  487. created_by=account.id,
  488. doc_form=document_form,
  489. doc_language=document_language
  490. )
  491. return document
  492. @staticmethod
  493. def get_tenant_documents_count():
  494. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  495. Document.enabled == True,
  496. Document.archived == False,
  497. Document.tenant_id == current_user.current_tenant_id).count()
  498. return documents_count
  499. @staticmethod
  500. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  501. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  502. created_from: str = 'web'):
  503. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  504. if document.display_status != 'available':
  505. raise ValueError("Document is not available")
  506. # save process rule
  507. if 'process_rule' in document_data and document_data['process_rule']:
  508. process_rule = document_data["process_rule"]
  509. if process_rule["mode"] == "custom":
  510. dataset_process_rule = DatasetProcessRule(
  511. dataset_id=dataset.id,
  512. mode=process_rule["mode"],
  513. rules=json.dumps(process_rule["rules"]),
  514. created_by=account.id
  515. )
  516. elif process_rule["mode"] == "automatic":
  517. dataset_process_rule = DatasetProcessRule(
  518. dataset_id=dataset.id,
  519. mode=process_rule["mode"],
  520. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  521. created_by=account.id
  522. )
  523. db.session.add(dataset_process_rule)
  524. db.session.commit()
  525. document.dataset_process_rule_id = dataset_process_rule.id
  526. # update document data source
  527. if 'data_source' in document_data and document_data['data_source']:
  528. file_name = ''
  529. data_source_info = {}
  530. if document_data["data_source"]["type"] == "upload_file":
  531. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  532. for file_id in upload_file_list:
  533. file = db.session.query(UploadFile).filter(
  534. UploadFile.tenant_id == dataset.tenant_id,
  535. UploadFile.id == file_id
  536. ).first()
  537. # raise error if file not found
  538. if not file:
  539. raise FileNotExistsError()
  540. file_name = file.name
  541. data_source_info = {
  542. "upload_file_id": file_id,
  543. }
  544. elif document_data["data_source"]["type"] == "notion_import":
  545. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  546. for notion_info in notion_info_list:
  547. workspace_id = notion_info['workspace_id']
  548. data_source_binding = DataSourceBinding.query.filter(
  549. db.and_(
  550. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  551. DataSourceBinding.provider == 'notion',
  552. DataSourceBinding.disabled == False,
  553. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  554. )
  555. ).first()
  556. if not data_source_binding:
  557. raise ValueError('Data source binding not found.')
  558. for page in notion_info['pages']:
  559. data_source_info = {
  560. "notion_workspace_id": workspace_id,
  561. "notion_page_id": page['page_id'],
  562. "notion_page_icon": page['page_icon'],
  563. "type": page['type']
  564. }
  565. document.data_source_type = document_data["data_source"]["type"]
  566. document.data_source_info = json.dumps(data_source_info)
  567. document.name = file_name
  568. # update document to be waiting
  569. document.indexing_status = 'waiting'
  570. document.completed_at = None
  571. document.processing_started_at = None
  572. document.parsing_completed_at = None
  573. document.cleaning_completed_at = None
  574. document.splitting_completed_at = None
  575. document.updated_at = datetime.datetime.utcnow()
  576. document.created_from = created_from
  577. document.doc_form = document_data['doc_form']
  578. db.session.add(document)
  579. db.session.commit()
  580. # update document segment
  581. update_params = {
  582. DocumentSegment.status: 're_segment'
  583. }
  584. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  585. db.session.commit()
  586. # trigger async task
  587. document_indexing_update_task.delay(document.dataset_id, document.id)
  588. return document
  589. @staticmethod
  590. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  591. # check document limit
  592. if current_app.config['EDITION'] == 'CLOUD':
  593. documents_count = DocumentService.get_tenant_documents_count()
  594. tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
  595. if documents_count > tenant_document_count:
  596. raise ValueError(f"over document limit {tenant_document_count}.")
  597. embedding_model = ModelFactory.get_embedding_model(
  598. tenant_id=tenant_id
  599. )
  600. # save dataset
  601. dataset = Dataset(
  602. tenant_id=tenant_id,
  603. name='',
  604. data_source_type=document_data["data_source"]["type"],
  605. indexing_technique=document_data["indexing_technique"],
  606. created_by=account.id,
  607. embedding_model=embedding_model.name,
  608. embedding_model_provider=embedding_model.model_provider.provider_name
  609. )
  610. db.session.add(dataset)
  611. db.session.flush()
  612. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  613. cut_length = 18
  614. cut_name = documents[0].name[:cut_length]
  615. dataset.name = cut_name + '...'
  616. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  617. db.session.commit()
  618. return dataset, documents, batch
  619. @classmethod
  620. def document_create_args_validate(cls, args: dict):
  621. if 'original_document_id' not in args or not args['original_document_id']:
  622. DocumentService.data_source_args_validate(args)
  623. DocumentService.process_rule_args_validate(args)
  624. else:
  625. if ('data_source' not in args and not args['data_source']) \
  626. and ('process_rule' not in args and not args['process_rule']):
  627. raise ValueError("Data source or Process rule is required")
  628. else:
  629. if 'data_source' in args and args['data_source']:
  630. DocumentService.data_source_args_validate(args)
  631. if 'process_rule' in args and args['process_rule']:
  632. DocumentService.process_rule_args_validate(args)
  633. @classmethod
  634. def data_source_args_validate(cls, args: dict):
  635. if 'data_source' not in args or not args['data_source']:
  636. raise ValueError("Data source is required")
  637. if not isinstance(args['data_source'], dict):
  638. raise ValueError("Data source is invalid")
  639. if 'type' not in args['data_source'] or not args['data_source']['type']:
  640. raise ValueError("Data source type is required")
  641. if args['data_source']['type'] not in Document.DATA_SOURCES:
  642. raise ValueError("Data source type is invalid")
  643. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  644. raise ValueError("Data source info is required")
  645. if args['data_source']['type'] == 'upload_file':
  646. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  647. 'file_info_list']:
  648. raise ValueError("File source info is required")
  649. if args['data_source']['type'] == 'notion_import':
  650. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  651. 'notion_info_list']:
  652. raise ValueError("Notion source info is required")
  653. @classmethod
  654. def process_rule_args_validate(cls, args: dict):
  655. if 'process_rule' not in args or not args['process_rule']:
  656. raise ValueError("Process rule is required")
  657. if not isinstance(args['process_rule'], dict):
  658. raise ValueError("Process rule is invalid")
  659. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  660. raise ValueError("Process rule mode is required")
  661. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  662. raise ValueError("Process rule mode is invalid")
  663. if args['process_rule']['mode'] == 'automatic':
  664. args['process_rule']['rules'] = {}
  665. else:
  666. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  667. raise ValueError("Process rule rules is required")
  668. if not isinstance(args['process_rule']['rules'], dict):
  669. raise ValueError("Process rule rules is invalid")
  670. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  671. or args['process_rule']['rules']['pre_processing_rules'] is None:
  672. raise ValueError("Process rule pre_processing_rules is required")
  673. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  674. raise ValueError("Process rule pre_processing_rules is invalid")
  675. unique_pre_processing_rule_dicts = {}
  676. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  677. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  678. raise ValueError("Process rule pre_processing_rules id is required")
  679. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  680. raise ValueError("Process rule pre_processing_rules id is invalid")
  681. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  682. raise ValueError("Process rule pre_processing_rules enabled is required")
  683. if not isinstance(pre_processing_rule['enabled'], bool):
  684. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  685. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  686. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  687. if 'segmentation' not in args['process_rule']['rules'] \
  688. or args['process_rule']['rules']['segmentation'] is None:
  689. raise ValueError("Process rule segmentation is required")
  690. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  691. raise ValueError("Process rule segmentation is invalid")
  692. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  693. or not args['process_rule']['rules']['segmentation']['separator']:
  694. raise ValueError("Process rule segmentation separator is required")
  695. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  696. raise ValueError("Process rule segmentation separator is invalid")
  697. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  698. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  699. raise ValueError("Process rule segmentation max_tokens is required")
  700. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  701. raise ValueError("Process rule segmentation max_tokens is invalid")
  702. @classmethod
  703. def estimate_args_validate(cls, args: dict):
  704. if 'info_list' not in args or not args['info_list']:
  705. raise ValueError("Data source info is required")
  706. if not isinstance(args['info_list'], dict):
  707. raise ValueError("Data info is invalid")
  708. if 'process_rule' not in args or not args['process_rule']:
  709. raise ValueError("Process rule is required")
  710. if not isinstance(args['process_rule'], dict):
  711. raise ValueError("Process rule is invalid")
  712. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  713. raise ValueError("Process rule mode is required")
  714. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  715. raise ValueError("Process rule mode is invalid")
  716. if args['process_rule']['mode'] == 'automatic':
  717. args['process_rule']['rules'] = {}
  718. else:
  719. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  720. raise ValueError("Process rule rules is required")
  721. if not isinstance(args['process_rule']['rules'], dict):
  722. raise ValueError("Process rule rules is invalid")
  723. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  724. or args['process_rule']['rules']['pre_processing_rules'] is None:
  725. raise ValueError("Process rule pre_processing_rules is required")
  726. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  727. raise ValueError("Process rule pre_processing_rules is invalid")
  728. unique_pre_processing_rule_dicts = {}
  729. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  730. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  731. raise ValueError("Process rule pre_processing_rules id is required")
  732. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  733. raise ValueError("Process rule pre_processing_rules id is invalid")
  734. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  735. raise ValueError("Process rule pre_processing_rules enabled is required")
  736. if not isinstance(pre_processing_rule['enabled'], bool):
  737. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  738. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  739. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  740. if 'segmentation' not in args['process_rule']['rules'] \
  741. or args['process_rule']['rules']['segmentation'] is None:
  742. raise ValueError("Process rule segmentation is required")
  743. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  744. raise ValueError("Process rule segmentation is invalid")
  745. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  746. or not args['process_rule']['rules']['segmentation']['separator']:
  747. raise ValueError("Process rule segmentation separator is required")
  748. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  749. raise ValueError("Process rule segmentation separator is invalid")
  750. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  751. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  752. raise ValueError("Process rule segmentation max_tokens is required")
  753. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  754. raise ValueError("Process rule segmentation max_tokens is invalid")
  755. class SegmentService:
  756. @classmethod
  757. def segment_create_args_validate(cls, args: dict, document: Document):
  758. if document.doc_form == 'qa_model':
  759. if 'answer' not in args or not args['answer']:
  760. raise ValueError("Answer is required")
  761. @classmethod
  762. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  763. content = args['content']
  764. doc_id = str(uuid.uuid4())
  765. segment_hash = helper.generate_text_hash(content)
  766. embedding_model = ModelFactory.get_embedding_model(
  767. tenant_id=dataset.tenant_id,
  768. model_provider_name=dataset.embedding_model_provider,
  769. model_name=dataset.embedding_model
  770. )
  771. # calc embedding use tokens
  772. tokens = embedding_model.get_num_tokens(content)
  773. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  774. DocumentSegment.document_id == document.id
  775. ).scalar()
  776. segment_document = DocumentSegment(
  777. tenant_id=current_user.current_tenant_id,
  778. dataset_id=document.dataset_id,
  779. document_id=document.id,
  780. index_node_id=doc_id,
  781. index_node_hash=segment_hash,
  782. position=max_position + 1 if max_position else 1,
  783. content=content,
  784. word_count=len(content),
  785. tokens=tokens,
  786. status='completed',
  787. indexing_at=datetime.datetime.utcnow(),
  788. completed_at=datetime.datetime.utcnow(),
  789. created_by=current_user.id
  790. )
  791. if document.doc_form == 'qa_model':
  792. segment_document.answer = args['answer']
  793. db.session.add(segment_document)
  794. db.session.commit()
  795. # save vector index
  796. try:
  797. VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
  798. except Exception as e:
  799. logging.exception("create segment index failed")
  800. segment_document.enabled = False
  801. segment_document.disabled_at = datetime.datetime.utcnow()
  802. segment_document.status = 'error'
  803. segment_document.error = str(e)
  804. db.session.commit()
  805. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  806. return segment
  807. @classmethod
  808. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  809. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  810. cache_result = redis_client.get(indexing_cache_key)
  811. if cache_result is not None:
  812. raise ValueError("Segment is indexing, please try again later")
  813. try:
  814. content = args['content']
  815. if segment.content == content:
  816. if document.doc_form == 'qa_model':
  817. segment.answer = args['answer']
  818. if args['keywords']:
  819. segment.keywords = args['keywords']
  820. db.session.add(segment)
  821. db.session.commit()
  822. # update segment index task
  823. if args['keywords']:
  824. kw_index = IndexBuilder.get_index(dataset, 'economy')
  825. # delete from keyword index
  826. kw_index.delete_by_ids([segment.index_node_id])
  827. # save keyword index
  828. kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
  829. else:
  830. segment_hash = helper.generate_text_hash(content)
  831. embedding_model = ModelFactory.get_embedding_model(
  832. tenant_id=dataset.tenant_id,
  833. model_provider_name=dataset.embedding_model_provider,
  834. model_name=dataset.embedding_model
  835. )
  836. # calc embedding use tokens
  837. tokens = embedding_model.get_num_tokens(content)
  838. segment.content = content
  839. segment.index_node_hash = segment_hash
  840. segment.word_count = len(content)
  841. segment.tokens = tokens
  842. segment.status = 'completed'
  843. segment.indexing_at = datetime.datetime.utcnow()
  844. segment.completed_at = datetime.datetime.utcnow()
  845. segment.updated_by = current_user.id
  846. segment.updated_at = datetime.datetime.utcnow()
  847. if document.doc_form == 'qa_model':
  848. segment.answer = args['answer']
  849. db.session.add(segment)
  850. db.session.commit()
  851. # update segment vector index
  852. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  853. except Exception as e:
  854. logging.exception("update segment index failed")
  855. segment.enabled = False
  856. segment.disabled_at = datetime.datetime.utcnow()
  857. segment.status = 'error'
  858. segment.error = str(e)
  859. db.session.commit()
  860. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  861. return segment
  862. @classmethod
  863. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  864. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  865. cache_result = redis_client.get(indexing_cache_key)
  866. if cache_result is not None:
  867. raise ValueError("Segment is deleting.")
  868. # send delete segment index task
  869. redis_client.setex(indexing_cache_key, 600, 1)
  870. # enabled segment need to delete index
  871. if segment.enabled:
  872. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  873. db.session.delete(segment)
  874. db.session.commit()