completion.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. import logging
  2. import re
  3. from typing import Optional, List, Union, Tuple
  4. from langchain.schema import BaseMessage
  5. from requests.exceptions import ChunkedEncodingError
  6. from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
  7. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  8. from core.callback_handler.llm_callback_handler import LLMCallbackHandler
  9. from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
  10. from core.model_providers.error import LLMBadRequestError
  11. from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
  12. ReadOnlyConversationTokenDBBufferSharedMemory
  13. from core.model_providers.model_factory import ModelFactory
  14. from core.model_providers.models.entity.message import PromptMessage, to_prompt_messages
  15. from core.model_providers.models.llm.base import BaseLLM
  16. from core.orchestrator_rule_parser import OrchestratorRuleParser
  17. from core.prompt.prompt_builder import PromptBuilder
  18. from core.prompt.prompt_template import JinjaPromptTemplate
  19. from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
  20. from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
  21. class Completion:
  22. @classmethod
  23. def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
  24. user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool, is_override: bool = False):
  25. """
  26. errors: ProviderTokenNotInitError
  27. """
  28. query = PromptBuilder.process_template(query)
  29. memory = None
  30. if conversation:
  31. # get memory of conversation (read-only)
  32. memory = cls.get_memory_from_conversation(
  33. tenant_id=app.tenant_id,
  34. app_model_config=app_model_config,
  35. conversation=conversation,
  36. return_messages=False
  37. )
  38. inputs = conversation.inputs
  39. final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  40. tenant_id=app.tenant_id,
  41. model_config=app_model_config.model_dict,
  42. streaming=streaming
  43. )
  44. conversation_message_task = ConversationMessageTask(
  45. task_id=task_id,
  46. app=app,
  47. app_model_config=app_model_config,
  48. user=user,
  49. conversation=conversation,
  50. is_override=is_override,
  51. inputs=inputs,
  52. query=query,
  53. streaming=streaming,
  54. model_instance=final_model_instance
  55. )
  56. rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
  57. mode=app.mode,
  58. model_instance=final_model_instance,
  59. app_model_config=app_model_config,
  60. query=query,
  61. inputs=inputs
  62. )
  63. # init orchestrator rule parser
  64. orchestrator_rule_parser = OrchestratorRuleParser(
  65. tenant_id=app.tenant_id,
  66. app_model_config=app_model_config
  67. )
  68. # parse sensitive_word_avoidance_chain
  69. chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
  70. sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain([chain_callback])
  71. if sensitive_word_avoidance_chain:
  72. query = sensitive_word_avoidance_chain.run(query)
  73. # get agent executor
  74. agent_executor = orchestrator_rule_parser.to_agent_executor(
  75. conversation_message_task=conversation_message_task,
  76. memory=memory,
  77. rest_tokens=rest_tokens_for_context_and_memory,
  78. chain_callback=chain_callback
  79. )
  80. # run agent executor
  81. agent_execute_result = None
  82. if agent_executor:
  83. should_use_agent = agent_executor.should_use_agent(query)
  84. if should_use_agent:
  85. agent_execute_result = agent_executor.run(query)
  86. # run the final llm
  87. try:
  88. cls.run_final_llm(
  89. model_instance=final_model_instance,
  90. mode=app.mode,
  91. app_model_config=app_model_config,
  92. query=query,
  93. inputs=inputs,
  94. agent_execute_result=agent_execute_result,
  95. conversation_message_task=conversation_message_task,
  96. memory=memory
  97. )
  98. except ConversationTaskStoppedException:
  99. return
  100. except ChunkedEncodingError as e:
  101. # Interrupt by LLM (like OpenAI), handle it.
  102. logging.warning(f'ChunkedEncodingError: {e}')
  103. conversation_message_task.end()
  104. return
  105. @classmethod
  106. def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str, inputs: dict,
  107. agent_execute_result: Optional[AgentExecuteResult],
  108. conversation_message_task: ConversationMessageTask,
  109. memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]):
  110. # When no extra pre prompt is specified,
  111. # the output of the agent can be used directly as the main output content without calling LLM again
  112. fake_response = None
  113. if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
  114. and agent_execute_result.strategy not in [PlanningStrategy.ROUTER, PlanningStrategy.REACT_ROUTER]:
  115. fake_response = agent_execute_result.output
  116. # get llm prompt
  117. prompt_messages, stop_words = model_instance.get_prompt(
  118. mode=mode,
  119. pre_prompt=app_model_config.pre_prompt,
  120. inputs=inputs,
  121. query=query,
  122. context=agent_execute_result.output if agent_execute_result else None,
  123. memory=memory
  124. )
  125. cls.recale_llm_max_tokens(
  126. model_instance=model_instance,
  127. prompt_messages=prompt_messages,
  128. )
  129. response = model_instance.run(
  130. messages=prompt_messages,
  131. stop=stop_words,
  132. callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
  133. fake_response=fake_response
  134. )
  135. return response
  136. @classmethod
  137. def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
  138. max_token_limit: int) -> str:
  139. """Get memory messages."""
  140. memory.max_token_limit = max_token_limit
  141. memory_key = memory.memory_variables[0]
  142. external_context = memory.load_memory_variables({})
  143. return external_context[memory_key]
  144. @classmethod
  145. def get_memory_from_conversation(cls, tenant_id: str, app_model_config: AppModelConfig,
  146. conversation: Conversation,
  147. **kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
  148. # only for calc token in memory
  149. memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  150. tenant_id=tenant_id,
  151. model_config=app_model_config.model_dict
  152. )
  153. # use llm config from conversation
  154. memory = ReadOnlyConversationTokenDBBufferSharedMemory(
  155. conversation=conversation,
  156. model_instance=memory_model_instance,
  157. max_token_limit=kwargs.get("max_token_limit", 2048),
  158. memory_key=kwargs.get("memory_key", "chat_history"),
  159. return_messages=kwargs.get("return_messages", True),
  160. input_key=kwargs.get("input_key", "input"),
  161. output_key=kwargs.get("output_key", "output"),
  162. message_limit=kwargs.get("message_limit", 10),
  163. )
  164. return memory
  165. @classmethod
  166. def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
  167. query: str, inputs: dict) -> int:
  168. model_limited_tokens = model_instance.model_rules.max_tokens.max
  169. max_tokens = model_instance.get_model_kwargs().max_tokens
  170. if model_limited_tokens is None:
  171. return -1
  172. if max_tokens is None:
  173. max_tokens = 0
  174. # get prompt without memory and context
  175. prompt_messages, _ = model_instance.get_prompt(
  176. mode=mode,
  177. pre_prompt=app_model_config.pre_prompt,
  178. inputs=inputs,
  179. query=query,
  180. context=None,
  181. memory=None
  182. )
  183. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  184. rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
  185. if rest_tokens < 0:
  186. raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
  187. "or shrink the max token, or switch to a llm with a larger token limit size.")
  188. return rest_tokens
  189. @classmethod
  190. def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
  191. # recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
  192. model_limited_tokens = model_instance.model_rules.max_tokens.max
  193. max_tokens = model_instance.get_model_kwargs().max_tokens
  194. if model_limited_tokens is None:
  195. return
  196. if max_tokens is None:
  197. max_tokens = 0
  198. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  199. if prompt_tokens + max_tokens > model_limited_tokens:
  200. max_tokens = max(model_limited_tokens - prompt_tokens, 16)
  201. # update model instance max tokens
  202. model_kwargs = model_instance.get_model_kwargs()
  203. model_kwargs.max_tokens = max_tokens
  204. model_instance.set_model_kwargs(model_kwargs)
  205. @classmethod
  206. def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
  207. app_model_config: AppModelConfig, user: Account, streaming: bool):
  208. final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  209. tenant_id=app.tenant_id,
  210. model_config=app_model_config.model_dict,
  211. streaming=streaming
  212. )
  213. # get llm prompt
  214. old_prompt_messages, _ = final_model_instance.get_prompt(
  215. mode='completion',
  216. pre_prompt=pre_prompt,
  217. inputs=message.inputs,
  218. query=message.query,
  219. context=None,
  220. memory=None
  221. )
  222. original_completion = message.answer.strip()
  223. prompt = MORE_LIKE_THIS_GENERATE_PROMPT
  224. prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
  225. prompt_messages = [PromptMessage(content=prompt)]
  226. conversation_message_task = ConversationMessageTask(
  227. task_id=task_id,
  228. app=app,
  229. app_model_config=app_model_config,
  230. user=user,
  231. inputs=message.inputs,
  232. query=message.query,
  233. is_override=True if message.override_model_configs else False,
  234. streaming=streaming,
  235. model_instance=final_model_instance
  236. )
  237. cls.recale_llm_max_tokens(
  238. model_instance=final_model_instance,
  239. prompt_messages=prompt_messages
  240. )
  241. final_model_instance.run(
  242. messages=prompt_messages,
  243. callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
  244. )