123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 |
- import os
- from collections.abc import Generator
- import pytest
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
- from core.model_runtime.entities.message_entities import (
- AssistantPromptMessage,
- PromptMessageTool,
- SystemPromptMessage,
- TextPromptMessageContent,
- UserPromptMessage,
- )
- from core.model_runtime.entities.model_entities import AIModelEntity
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModel
- from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
- def test_predefined_models():
- model = ChatGLMLargeLanguageModel()
- model_schemas = model.predefined_models()
- assert len(model_schemas) >= 1
- assert isinstance(model_schemas[0], AIModelEntity)
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
- def test_validate_credentials_for_chat_model(setup_openai_mock):
- model = ChatGLMLargeLanguageModel()
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(
- model='chatglm2-6b',
- credentials={
- 'api_base': 'invalid_key'
- }
- )
- model.validate_credentials(
- model='chatglm2-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- }
- )
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
- def test_invoke_model(setup_openai_mock):
- model = ChatGLMLargeLanguageModel()
- response = model.invoke(
- model='chatglm2-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='You are a helpful AI assistant.',
- ),
- UserPromptMessage(
- content='Hello World!'
- )
- ],
- model_parameters={
- 'temperature': 0.7,
- 'top_p': 1.0,
- },
- stop=['you'],
- user="abc-123",
- stream=False
- )
- assert isinstance(response, LLMResult)
- assert len(response.message.content) > 0
- assert response.usage.total_tokens > 0
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
- def test_invoke_stream_model(setup_openai_mock):
- model = ChatGLMLargeLanguageModel()
- response = model.invoke(
- model='chatglm2-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='You are a helpful AI assistant.',
- ),
- UserPromptMessage(
- content='Hello World!'
- )
- ],
- model_parameters={
- 'temperature': 0.7,
- 'top_p': 1.0,
- },
- stop=['you'],
- stream=True,
- user="abc-123"
- )
- assert isinstance(response, Generator)
- for chunk in response:
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
- def test_invoke_stream_model_with_functions(setup_openai_mock):
- model = ChatGLMLargeLanguageModel()
- response = model.invoke(
- model='chatglm3-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。'
- ),
- UserPromptMessage(
- content='波士顿天气如何?'
- )
- ],
- model_parameters={
- 'temperature': 0,
- 'top_p': 1.0,
- },
- stop=['you'],
- user='abc-123',
- stream=True,
- tools=[
- PromptMessageTool(
- name='get_current_weather',
- description='Get the current weather in a given location',
- parameters={
- "type": "object",
- "properties": {
- "location": {
- "type": "string",
- "description": "The city and state e.g. San Francisco, CA"
- },
- "unit": {
- "type": "string",
- "enum": ["celsius", "fahrenheit"]
- }
- },
- "required": [
- "location"
- ]
- }
- )
- ]
- )
- assert isinstance(response, Generator)
-
- call: LLMResultChunk = None
- chunks = []
- for chunk in response:
- chunks.append(chunk)
- assert isinstance(chunk, LLMResultChunk)
- assert isinstance(chunk.delta, LLMResultChunkDelta)
- assert isinstance(chunk.delta.message, AssistantPromptMessage)
- assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True
- if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:
- call = chunk
- break
- assert call is not None
- assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'
- @pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)
- def test_invoke_model_with_functions(setup_openai_mock):
- model = ChatGLMLargeLanguageModel()
- response = model.invoke(
- model='chatglm3-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- },
- prompt_messages=[
- UserPromptMessage(
- content='What is the weather like in San Francisco?'
- )
- ],
- model_parameters={
- 'temperature': 0.7,
- 'top_p': 1.0,
- },
- stop=['you'],
- user='abc-123',
- stream=False,
- tools=[
- PromptMessageTool(
- name='get_current_weather',
- description='Get the current weather in a given location',
- parameters={
- "type": "object",
- "properties": {
- "location": {
- "type": "string",
- "description": "The city and state e.g. San Francisco, CA"
- },
- "unit": {
- "type": "string",
- "enum": [
- "c",
- "f"
- ]
- }
- },
- "required": [
- "location"
- ]
- }
- )
- ]
- )
- assert isinstance(response, LLMResult)
- assert len(response.message.content) > 0
- assert response.usage.total_tokens > 0
- assert response.message.tool_calls[0].function.name == 'get_current_weather'
- def test_get_num_tokens():
- model = ChatGLMLargeLanguageModel()
- num_tokens = model.get_num_tokens(
- model='chatglm2-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='You are a helpful AI assistant.',
- ),
- UserPromptMessage(
- content='Hello World!'
- )
- ],
- tools=[
- PromptMessageTool(
- name='get_current_weather',
- description='Get the current weather in a given location',
- parameters={
- "type": "object",
- "properties": {
- "location": {
- "type": "string",
- "description": "The city and state e.g. San Francisco, CA"
- },
- "unit": {
- "type": "string",
- "enum": [
- "c",
- "f"
- ]
- }
- },
- "required": [
- "location"
- ]
- }
- )
- ]
- )
- assert isinstance(num_tokens, int)
- assert num_tokens == 77
- num_tokens = model.get_num_tokens(
- model='chatglm2-6b',
- credentials={
- 'api_base': os.environ.get('CHATGLM_API_BASE')
- },
- prompt_messages=[
- SystemPromptMessage(
- content='You are a helpful AI assistant.',
- ),
- UserPromptMessage(
- content='Hello World!'
- )
- ],
- )
- assert isinstance(num_tokens, int)
- assert num_tokens == 21
|