| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627 | 
							- import json
 
- import logging
 
- import datetime
 
- import time
 
- import random
 
- from typing import Optional
 
- from extensions.ext_redis import redis_client
 
- from flask_login import current_user
 
- from core.index.index_builder import IndexBuilder
 
- from events.dataset_event import dataset_was_deleted
 
- from events.document_event import document_was_deleted
 
- from extensions.ext_database import db
 
- from models.account import Account
 
- from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
 
- from models.model import UploadFile
 
- from services.errors.account import NoPermissionError
 
- from services.errors.dataset import DatasetNameDuplicateError
 
- from services.errors.document import DocumentIndexingError
 
- from services.errors.file import FileNotExistsError
 
- from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 
- from tasks.document_indexing_task import document_indexing_task
 
- from tasks.document_indexing_update_task import document_indexing_update_task
 
- class DatasetService:
 
-     @staticmethod
 
-     def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
 
-         if user:
 
-             permission_filter = db.or_(Dataset.created_by == user.id,
 
-                                        Dataset.permission == 'all_team_members')
 
-         else:
 
-             permission_filter = Dataset.permission == 'all_team_members'
 
-         datasets = Dataset.query.filter(
 
-             db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
 
-             .paginate(
 
-             page=page,
 
-             per_page=per_page,
 
-             max_per_page=100,
 
-             error_out=False
 
-         )
 
-         return datasets.items, datasets.total
 
-     @staticmethod
 
-     def get_process_rules(dataset_id):
 
-         # get the latest process rule
 
-         dataset_process_rule = db.session.query(DatasetProcessRule). \
 
-             filter(DatasetProcessRule.dataset_id == dataset_id). \
 
-             order_by(DatasetProcessRule.created_at.desc()). \
 
-             limit(1). \
 
-             one_or_none()
 
-         if dataset_process_rule:
 
-             mode = dataset_process_rule.mode
 
-             rules = dataset_process_rule.rules_dict
 
-         else:
 
-             mode = DocumentService.DEFAULT_RULES['mode']
 
-             rules = DocumentService.DEFAULT_RULES['rules']
 
-         return {
 
-             'mode': mode,
 
-             'rules': rules
 
-         }
 
-     @staticmethod
 
-     def get_datasets_by_ids(ids, tenant_id):
 
-         datasets = Dataset.query.filter(Dataset.id.in_(ids),
 
-                                         Dataset.tenant_id == tenant_id).paginate(
 
-             page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
 
-         return datasets.items, datasets.total
 
-     @staticmethod
 
-     def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
 
-         # check if dataset name already exists
 
-         if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 
-             raise DatasetNameDuplicateError(
 
-                 f'Dataset with name {name} already exists.')
 
-         dataset = Dataset(name=name, indexing_technique=indexing_technique, data_source_type='upload_file')
 
-         # dataset = Dataset(name=name, provider=provider, config=config)
 
-         dataset.created_by = account.id
 
-         dataset.updated_by = account.id
 
-         dataset.tenant_id = tenant_id
 
-         db.session.add(dataset)
 
-         db.session.commit()
 
-         return dataset
 
-     @staticmethod
 
-     def get_dataset(dataset_id):
 
-         dataset = Dataset.query.filter_by(
 
-             id=dataset_id
 
-         ).first()
 
-         if dataset is None:
 
-             return None
 
-         else:
 
-             return dataset
 
-     @staticmethod
 
-     def update_dataset(dataset_id, data, user):
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         DatasetService.check_dataset_permission(dataset, user)
 
-         if dataset.indexing_technique != data['indexing_technique']:
 
-             # if update indexing_technique
 
-             if data['indexing_technique'] == 'economy':
 
-                 deal_dataset_vector_index_task.delay(dataset_id, 'remove')
 
-             elif data['indexing_technique'] == 'high_quality':
 
-                 deal_dataset_vector_index_task.delay(dataset_id, 'add')
 
-         filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
 
-         filtered_data['updated_by'] = user.id
 
-         filtered_data['updated_at'] = datetime.datetime.now()
 
-         dataset.query.filter_by(id=dataset_id).update(filtered_data)
 
-         db.session.commit()
 
-         return dataset
 
-     @staticmethod
 
-     def delete_dataset(dataset_id, user):
 
-         # todo: cannot delete dataset if it is being processed
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         if dataset is None:
 
-             return False
 
-         DatasetService.check_dataset_permission(dataset, user)
 
-         dataset_was_deleted.send(dataset)
 
-         db.session.delete(dataset)
 
-         db.session.commit()
 
-         return True
 
-     @staticmethod
 
-     def check_dataset_permission(dataset, user):
 
-         if dataset.tenant_id != user.current_tenant_id:
 
-             logging.debug(
 
-                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 
-             raise NoPermissionError(
 
-                 'You do not have permission to access this dataset.')
 
-         if dataset.permission == 'only_me' and dataset.created_by != user.id:
 
-             logging.debug(
 
-                 f'User {user.id} does not have permission to access dataset {dataset.id}')
 
-             raise NoPermissionError(
 
-                 'You do not have permission to access this dataset.')
 
-     @staticmethod
 
-     def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 
-         dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
 
-             .order_by(db.desc(DatasetQuery.created_at)) \
 
-             .paginate(
 
-             page=page, per_page=per_page, max_per_page=100, error_out=False
 
-         )
 
-         return dataset_queries.items, dataset_queries.total
 
-     @staticmethod
 
-     def get_related_apps(dataset_id: str):
 
-         return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
 
-             .order_by(db.desc(AppDatasetJoin.created_at)).all()
 
- class DocumentService:
 
-     DEFAULT_RULES = {
 
-         'mode': 'custom',
 
-         'rules': {
 
-             'pre_processing_rules': [
 
-                 {'id': 'remove_extra_spaces', 'enabled': True},
 
-                 {'id': 'remove_urls_emails', 'enabled': False}
 
-             ],
 
-             'segmentation': {
 
-                 'delimiter': '\n',
 
-                 'max_tokens': 500
 
-             }
 
-         }
 
-     }
 
-     DOCUMENT_METADATA_SCHEMA = {
 
-         "book": {
 
-             "title": str,
 
-             "language": str,
 
-             "author": str,
 
-             "publisher": str,
 
-             "publication_date": str,
 
-             "isbn": str,
 
-             "category": str,
 
-         },
 
-         "web_page": {
 
-             "title": str,
 
-             "url": str,
 
-             "language": str,
 
-             "publish_date": str,
 
-             "author/publisher": str,
 
-             "topic/keywords": str,
 
-             "description": str,
 
-         },
 
-         "paper": {
 
-             "title": str,
 
-             "language": str,
 
-             "author": str,
 
-             "publish_date": str,
 
-             "journal/conference_name": str,
 
-             "volume/issue/page_numbers": str,
 
-             "doi": str,
 
-             "topic/keywords": str,
 
-             "abstract": str,
 
-         },
 
-         "social_media_post": {
 
-             "platform": str,
 
-             "author/username": str,
 
-             "publish_date": str,
 
-             "post_url": str,
 
-             "topic/tags": str,
 
-         },
 
-         "wikipedia_entry": {
 
-             "title": str,
 
-             "language": str,
 
-             "web_page_url": str,
 
-             "last_edit_date": str,
 
-             "editor/contributor": str,
 
-             "summary/introduction": str,
 
-         },
 
-         "personal_document": {
 
-             "title": str,
 
-             "author": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "document_type": str,
 
-             "tags/category": str,
 
-         },
 
-         "business_document": {
 
-             "title": str,
 
-             "author": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "document_type": str,
 
-             "department/team": str,
 
-         },
 
-         "im_chat_log": {
 
-             "chat_platform": str,
 
-             "chat_participants/group_name": str,
 
-             "start_date": str,
 
-             "end_date": str,
 
-             "summary": str,
 
-         },
 
-         "synced_from_notion": {
 
-             "title": str,
 
-             "language": str,
 
-             "author/creator": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "notion_page_link": str,
 
-             "category/tags": str,
 
-             "description": str,
 
-         },
 
-         "synced_from_github": {
 
-             "repository_name": str,
 
-             "repository_description": str,
 
-             "repository_owner/organization": str,
 
-             "code_filename": str,
 
-             "code_file_path": str,
 
-             "programming_language": str,
 
-             "github_link": str,
 
-             "open_source_license": str,
 
-             "commit_date": str,
 
-             "commit_author": str
 
-         }
 
-     }
 
-     @staticmethod
 
-     def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 
-         document = db.session.query(Document).filter(
 
-             Document.id == document_id,
 
-             Document.dataset_id == dataset_id
 
-         ).first()
 
-         return document
 
-     @staticmethod
 
-     def get_document_by_id(document_id: str) -> Optional[Document]:
 
-         document = db.session.query(Document).filter(
 
-             Document.id == document_id
 
-         ).first()
 
-         return document
 
-     @staticmethod
 
-     def get_document_file_detail(file_id: str):
 
-         file_detail = db.session.query(UploadFile). \
 
-             filter(UploadFile.id == file_id). \
 
-             one_or_none()
 
-         return file_detail
 
-     @staticmethod
 
-     def check_archived(document):
 
-         if document.archived:
 
-             return True
 
-         else:
 
-             return False
 
-     @staticmethod
 
-     def delete_document(document):
 
-         if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
 
-             raise DocumentIndexingError()
 
-         # trigger document_was_deleted signal
 
-         document_was_deleted.send(document.id, dataset_id=document.dataset_id)
 
-         db.session.delete(document)
 
-         db.session.commit()
 
-     @staticmethod
 
-     def pause_document(document):
 
-         if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 
-             raise DocumentIndexingError()
 
-         # update document to be paused
 
-         document.is_paused = True
 
-         document.paused_by = current_user.id
 
-         document.paused_at = datetime.datetime.utcnow()
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # set document paused flag
 
-         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 
-         redis_client.setnx(indexing_cache_key, "True")
 
-     @staticmethod
 
-     def recover_document(document):
 
-         if not document.is_paused:
 
-             raise DocumentIndexingError()
 
-         # update document to be recover
 
-         document.is_paused = False
 
-         document.paused_by = current_user.id
 
-         document.paused_at = time.time()
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # delete paused flag
 
-         indexing_cache_key = 'document_{}_is_paused'.format(document.id)
 
-         redis_client.delete(indexing_cache_key)
 
-         # trigger async task
 
-         document_indexing_task.delay(document.dataset_id, document.id)
 
-     @staticmethod
 
-     def get_documents_position(dataset_id):
 
-         documents = Document.query.filter_by(dataset_id=dataset_id).all()
 
-         if documents:
 
-             return len(documents) + 1
 
-         else:
 
-             return 1
 
-     @staticmethod
 
-     def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
 
-                                       account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 
-                                       created_from: str = 'web'):
 
-         if not dataset.indexing_technique:
 
-             if 'indexing_technique' not in document_data \
 
-                     or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
 
-                 raise ValueError("Indexing technique is required")
 
-             dataset.indexing_technique = document_data["indexing_technique"]
 
-         if dataset.indexing_technique == 'high_quality':
 
-             IndexBuilder.get_default_service_context(dataset.tenant_id)
 
-         if 'original_document_id' in document_data and document_data["original_document_id"]:
 
-             document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 
-         else:
 
-             # save process rule
 
-             if not dataset_process_rule:
 
-                 process_rule = document_data["process_rule"]
 
-                 if process_rule["mode"] == "custom":
 
-                     dataset_process_rule = DatasetProcessRule(
 
-                         dataset_id=dataset.id,
 
-                         mode=process_rule["mode"],
 
-                         rules=json.dumps(process_rule["rules"]),
 
-                         created_by=account.id
 
-                     )
 
-                 elif process_rule["mode"] == "automatic":
 
-                     dataset_process_rule = DatasetProcessRule(
 
-                         dataset_id=dataset.id,
 
-                         mode=process_rule["mode"],
 
-                         rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 
-                         created_by=account.id
 
-                     )
 
-                 db.session.add(dataset_process_rule)
 
-                 db.session.commit()
 
-             file_name = ''
 
-             data_source_info = {}
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 file_id = document_data["data_source"]["info"]
 
-                 file = db.session.query(UploadFile).filter(
 
-                     UploadFile.tenant_id == dataset.tenant_id,
 
-                     UploadFile.id == file_id
 
-                 ).first()
 
-                 # raise error if file not found
 
-                 if not file:
 
-                     raise FileNotExistsError()
 
-                 file_name = file.name
 
-                 data_source_info = {
 
-                     "upload_file_id": file_id,
 
-                 }
 
-             # save document
 
-             position = DocumentService.get_documents_position(dataset.id)
 
-             document = Document(
 
-                 tenant_id=dataset.tenant_id,
 
-                 dataset_id=dataset.id,
 
-                 position=position,
 
-                 data_source_type=document_data["data_source"]["type"],
 
-                 data_source_info=json.dumps(data_source_info),
 
-                 dataset_process_rule_id=dataset_process_rule.id,
 
-                 batch=time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999)),
 
-                 name=file_name,
 
-                 created_from=created_from,
 
-                 created_by=account.id,
 
-                 # created_api_request_id = db.Column(UUID, nullable=True)
 
-             )
 
-             db.session.add(document)
 
-             db.session.commit()
 
-             # trigger async task
 
-             document_indexing_task.delay(document.dataset_id, document.id)
 
-         return document
 
-     @staticmethod
 
-     def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
 
-                                         account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
 
-                                         created_from: str = 'web'):
 
-         document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 
-         if document.display_status != 'available':
 
-             raise ValueError("Document is not available")
 
-         # save process rule
 
-         if 'process_rule' in document_data and document_data['process_rule']:
 
-             process_rule = document_data["process_rule"]
 
-             if process_rule["mode"] == "custom":
 
-                 dataset_process_rule = DatasetProcessRule(
 
-                     dataset_id=dataset.id,
 
-                     mode=process_rule["mode"],
 
-                     rules=json.dumps(process_rule["rules"]),
 
-                     created_by=account.id
 
-                 )
 
-             elif process_rule["mode"] == "automatic":
 
-                 dataset_process_rule = DatasetProcessRule(
 
-                     dataset_id=dataset.id,
 
-                     mode=process_rule["mode"],
 
-                     rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 
-                     created_by=account.id
 
-                 )
 
-             db.session.add(dataset_process_rule)
 
-             db.session.commit()
 
-             document.dataset_process_rule_id = dataset_process_rule.id
 
-         # update document data source
 
-         if 'data_source' in document_data and document_data['data_source']:
 
-             file_name = ''
 
-             data_source_info = {}
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 file_id = document_data["data_source"]["info"]
 
-                 file = db.session.query(UploadFile).filter(
 
-                     UploadFile.tenant_id == dataset.tenant_id,
 
-                     UploadFile.id == file_id
 
-                 ).first()
 
-                 # raise error if file not found
 
-                 if not file:
 
-                     raise FileNotExistsError()
 
-                 file_name = file.name
 
-                 data_source_info = {
 
-                     "upload_file_id": file_id,
 
-                 }
 
-             document.data_source_type = document_data["data_source"]["type"]
 
-             document.data_source_info = json.dumps(data_source_info)
 
-             document.name = file_name
 
-         # update document to be waiting
 
-         document.indexing_status = 'waiting'
 
-         document.completed_at = None
 
-         document.processing_started_at = None
 
-         document.parsing_completed_at = None
 
-         document.cleaning_completed_at = None
 
-         document.splitting_completed_at = None
 
-         document.updated_at = datetime.datetime.utcnow()
 
-         document.created_from = created_from
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # update document segment
 
-         update_params = {
 
-             DocumentSegment.status: 're_segment'
 
-         }
 
-         DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 
-         db.session.commit()
 
-         # trigger async task
 
-         document_indexing_update_task.delay(document.dataset_id, document.id)
 
-         return document
 
-     @staticmethod
 
-     def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 
-         # save dataset
 
-         dataset = Dataset(
 
-             tenant_id=tenant_id,
 
-             name='',
 
-             data_source_type=document_data["data_source"]["type"],
 
-             indexing_technique=document_data["indexing_technique"],
 
-             created_by=account.id
 
-         )
 
-         db.session.add(dataset)
 
-         db.session.flush()
 
-         document = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 
-         cut_length = 18
 
-         cut_name = document.name[:cut_length]
 
-         dataset.name = cut_name + '...' if len(document.name) > cut_length else cut_name
 
-         dataset.description = 'useful for when you want to answer queries about the ' + document.name
 
-         db.session.commit()
 
-         return dataset, document
 
-     @classmethod
 
-     def document_create_args_validate(cls, args: dict):
 
-         if 'original_document_id' not in args or not args['original_document_id']:
 
-             DocumentService.data_source_args_validate(args)
 
-             DocumentService.process_rule_args_validate(args)
 
-         else:
 
-             if ('data_source' not in args and not args['data_source'])\
 
-                     and ('process_rule' not in args and not args['process_rule']):
 
-                 raise ValueError("Data source or Process rule is required")
 
-             else:
 
-                 if 'data_source' in args and args['data_source']:
 
-                     DocumentService.data_source_args_validate(args)
 
-                 if 'process_rule' in args and args['process_rule']:
 
-                     DocumentService.process_rule_args_validate(args)
 
-     @classmethod
 
-     def data_source_args_validate(cls, args: dict):
 
-         if 'data_source' not in args or not args['data_source']:
 
-             raise ValueError("Data source is required")
 
-         if not isinstance(args['data_source'], dict):
 
-             raise ValueError("Data source is invalid")
 
-         if 'type' not in args['data_source'] or not args['data_source']['type']:
 
-             raise ValueError("Data source type is required")
 
-         if args['data_source']['type'] not in Document.DATA_SOURCES:
 
-             raise ValueError("Data source type is invalid")
 
-         if args['data_source']['type'] == 'upload_file':
 
-             if 'info' not in args['data_source'] or not args['data_source']['info']:
 
-                 raise ValueError("Data source info is required")
 
-     @classmethod
 
-     def process_rule_args_validate(cls, args: dict):
 
-         if 'process_rule' not in args or not args['process_rule']:
 
-             raise ValueError("Process rule is required")
 
-         if not isinstance(args['process_rule'], dict):
 
-             raise ValueError("Process rule is invalid")
 
-         if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
 
-             raise ValueError("Process rule mode is required")
 
-         if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
 
-             raise ValueError("Process rule mode is invalid")
 
-         if args['process_rule']['mode'] == 'automatic':
 
-             args['process_rule']['rules'] = {}
 
-         else:
 
-             if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
 
-                 raise ValueError("Process rule rules is required")
 
-             if not isinstance(args['process_rule']['rules'], dict):
 
-                 raise ValueError("Process rule rules is invalid")
 
-             if 'pre_processing_rules' not in args['process_rule']['rules'] \
 
-                     or args['process_rule']['rules']['pre_processing_rules'] is None:
 
-                 raise ValueError("Process rule pre_processing_rules is required")
 
-             if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
 
-                 raise ValueError("Process rule pre_processing_rules is invalid")
 
-             unique_pre_processing_rule_dicts = {}
 
-             for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
 
-                 if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
 
-                     raise ValueError("Process rule pre_processing_rules id is required")
 
-                 if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 
-                     raise ValueError("Process rule pre_processing_rules id is invalid")
 
-                 if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
 
-                     raise ValueError("Process rule pre_processing_rules enabled is required")
 
-                 if not isinstance(pre_processing_rule['enabled'], bool):
 
-                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 
-                 unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
 
-             args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
 
-             if 'segmentation' not in args['process_rule']['rules'] \
 
-                     or args['process_rule']['rules']['segmentation'] is None:
 
-                 raise ValueError("Process rule segmentation is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation'], dict):
 
-                 raise ValueError("Process rule segmentation is invalid")
 
-             if 'separator' not in args['process_rule']['rules']['segmentation'] \
 
-                     or not args['process_rule']['rules']['segmentation']['separator']:
 
-                 raise ValueError("Process rule segmentation separator is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
 
-                 raise ValueError("Process rule segmentation separator is invalid")
 
-             if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
 
-                     or not args['process_rule']['rules']['segmentation']['max_tokens']:
 
-                 raise ValueError("Process rule segmentation max_tokens is required")
 
-             if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
 
-                 raise ValueError("Process rule segmentation max_tokens is invalid")
 
 
  |