1234567891011121314151617181920212223242526272829303132333435363738394041 |
- import os
- import dashscope
- import pytest
- from core.model_runtime.entities.rerank_entities import RerankResult
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
- from core.model_runtime.model_providers.tongyi.rerank.rerank import GTERerankModel
- def test_validate_credentials():
- model = GTERerankModel()
- with pytest.raises(CredentialsValidateFailedError):
- model.validate_credentials(model="get-rank", credentials={"dashscope_api_key": "invalid_key"})
- model.validate_credentials(
- model="get-rank", credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")}
- )
- def test_invoke_model():
- model = GTERerankModel()
- result = model.invoke(
- model=dashscope.TextReRank.Models.gte_rerank,
- credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")},
- query="什么是文本排序模型",
- docs=[
- "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序",
- "量子计算是计算科学的一个前沿领域",
- "预训练语言模型的发展给文本排序模型带来了新的进展",
- ],
- score_threshold=0.7,
- )
- assert isinstance(result, RerankResult)
- assert len(result.docs) == 1
- assert result.docs[0].index == 0
- assert result.docs[0].score >= 0.7
|