retrieval_service.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from core.rag.rerank.constants.rerank_mode import RerankMode
  8. from core.rag.retrieval.retrival_methods import RetrievalMethod
  9. from extensions.ext_database import db
  10. from models.dataset import Dataset
  11. default_retrieval_model = {
  12. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  13. 'reranking_enable': False,
  14. 'reranking_model': {
  15. 'reranking_provider_name': '',
  16. 'reranking_model_name': ''
  17. },
  18. 'top_k': 2,
  19. 'score_threshold_enabled': False
  20. }
  21. class RetrievalService:
  22. @classmethod
  23. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  24. top_k: int, score_threshold: Optional[float] = .0,
  25. reranking_model: Optional[dict] = None, reranking_mode: Optional[str] = 'reranking_model',
  26. weights: Optional[dict] = None):
  27. dataset = db.session.query(Dataset).filter(
  28. Dataset.id == dataset_id
  29. ).first()
  30. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  31. return []
  32. all_documents = []
  33. threads = []
  34. exceptions = []
  35. # retrieval_model source with keyword
  36. if retrival_method == 'keyword_search':
  37. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  38. 'flask_app': current_app._get_current_object(),
  39. 'dataset_id': dataset_id,
  40. 'query': query,
  41. 'top_k': top_k,
  42. 'all_documents': all_documents,
  43. 'exceptions': exceptions,
  44. })
  45. threads.append(keyword_thread)
  46. keyword_thread.start()
  47. # retrieval_model source with semantic
  48. if RetrievalMethod.is_support_semantic_search(retrival_method):
  49. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  50. 'flask_app': current_app._get_current_object(),
  51. 'dataset_id': dataset_id,
  52. 'query': query,
  53. 'top_k': top_k,
  54. 'score_threshold': score_threshold,
  55. 'reranking_model': reranking_model,
  56. 'all_documents': all_documents,
  57. 'retrival_method': retrival_method,
  58. 'exceptions': exceptions,
  59. })
  60. threads.append(embedding_thread)
  61. embedding_thread.start()
  62. # retrieval source with full text
  63. if RetrievalMethod.is_support_fulltext_search(retrival_method):
  64. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  65. 'flask_app': current_app._get_current_object(),
  66. 'dataset_id': dataset_id,
  67. 'query': query,
  68. 'retrival_method': retrival_method,
  69. 'score_threshold': score_threshold,
  70. 'top_k': top_k,
  71. 'reranking_model': reranking_model,
  72. 'all_documents': all_documents,
  73. 'exceptions': exceptions,
  74. })
  75. threads.append(full_text_index_thread)
  76. full_text_index_thread.start()
  77. for thread in threads:
  78. thread.join()
  79. if exceptions:
  80. exception_message = ';\n'.join(exceptions)
  81. raise Exception(exception_message)
  82. if retrival_method == RetrievalMethod.HYBRID_SEARCH.value:
  83. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_mode,
  84. reranking_model, weights, False)
  85. all_documents = data_post_processor.invoke(
  86. query=query,
  87. documents=all_documents,
  88. score_threshold=score_threshold,
  89. top_n=top_k
  90. )
  91. return all_documents
  92. @classmethod
  93. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  94. top_k: int, all_documents: list, exceptions: list):
  95. with flask_app.app_context():
  96. try:
  97. dataset = db.session.query(Dataset).filter(
  98. Dataset.id == dataset_id
  99. ).first()
  100. keyword = Keyword(
  101. dataset=dataset
  102. )
  103. documents = keyword.search(
  104. cls.escape_query_for_search(query),
  105. top_k=top_k
  106. )
  107. all_documents.extend(documents)
  108. except Exception as e:
  109. exceptions.append(str(e))
  110. @classmethod
  111. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  112. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  113. all_documents: list, retrival_method: str, exceptions: list):
  114. with flask_app.app_context():
  115. try:
  116. dataset = db.session.query(Dataset).filter(
  117. Dataset.id == dataset_id
  118. ).first()
  119. vector = Vector(
  120. dataset=dataset
  121. )
  122. documents = vector.search_by_vector(
  123. cls.escape_query_for_search(query),
  124. search_type='similarity_score_threshold',
  125. top_k=top_k,
  126. score_threshold=score_threshold,
  127. filter={
  128. 'group_id': [dataset.id]
  129. }
  130. )
  131. if documents:
  132. if reranking_model and retrival_method == RetrievalMethod.SEMANTIC_SEARCH.value:
  133. data_post_processor = DataPostProcessor(str(dataset.tenant_id),
  134. RerankMode.RERANKING_MODEL.value,
  135. reranking_model, None, False)
  136. all_documents.extend(data_post_processor.invoke(
  137. query=query,
  138. documents=documents,
  139. score_threshold=score_threshold,
  140. top_n=len(documents)
  141. ))
  142. else:
  143. all_documents.extend(documents)
  144. except Exception as e:
  145. exceptions.append(str(e))
  146. @classmethod
  147. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  148. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  149. all_documents: list, retrival_method: str, exceptions: list):
  150. with flask_app.app_context():
  151. try:
  152. dataset = db.session.query(Dataset).filter(
  153. Dataset.id == dataset_id
  154. ).first()
  155. vector_processor = Vector(
  156. dataset=dataset,
  157. )
  158. documents = vector_processor.search_by_full_text(
  159. cls.escape_query_for_search(query),
  160. top_k=top_k
  161. )
  162. if documents:
  163. if reranking_model and retrival_method == RetrievalMethod.FULL_TEXT_SEARCH.value:
  164. data_post_processor = DataPostProcessor(str(dataset.tenant_id),
  165. RerankMode.RERANKING_MODEL.value,
  166. reranking_model, None, False)
  167. all_documents.extend(data_post_processor.invoke(
  168. query=query,
  169. documents=documents,
  170. score_threshold=score_threshold,
  171. top_n=len(documents)
  172. ))
  173. else:
  174. all_documents.extend(documents)
  175. except Exception as e:
  176. exceptions.append(str(e))
  177. @staticmethod
  178. def escape_query_for_search(query: str) -> str:
  179. return query.replace('"', '\\"')