| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669 | 
							- import datetime
 
- import json
 
- import logging
 
- import random
 
- import time
 
- import uuid
 
- from typing import Optional
 
- from flask_login import current_user
 
- from sqlalchemy import func
 
- from configs import dify_config
 
- from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
 
- from core.model_manager import ModelManager
 
- from core.model_runtime.entities.model_entities import ModelType
 
- from core.rag.datasource.keyword.keyword_factory import Keyword
 
- from core.rag.models.document import Document as RAGDocument
 
- from core.rag.retrieval.retrival_methods import RetrievalMethod
 
- from events.dataset_event import dataset_was_deleted
 
- from events.document_event import document_was_deleted
 
- from extensions.ext_database import db
 
- from extensions.ext_redis import redis_client
 
- from libs import helper
 
- from models.account import Account, TenantAccountRole
 
- from models.dataset import (
 
-     AppDatasetJoin,
 
-     Dataset,
 
-     DatasetCollectionBinding,
 
-     DatasetPermission,
 
-     DatasetPermissionEnum,
 
-     DatasetProcessRule,
 
-     DatasetQuery,
 
-     Document,
 
-     DocumentSegment,
 
- )
 
- from models.model import UploadFile
 
- from models.source import DataSourceOauthBinding
 
- from services.errors.account import NoPermissionError
 
- from services.errors.dataset import DatasetNameDuplicateError
 
- from services.errors.document import DocumentIndexingError
 
- from services.errors.file import FileNotExistsError
 
- from services.feature_service import FeatureModel, FeatureService
 
- from services.tag_service import TagService
 
- from services.vector_service import VectorService
 
- from tasks.clean_notion_document_task import clean_notion_document_task
 
- from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
 
- from tasks.delete_segment_from_index_task import delete_segment_from_index_task
 
- from tasks.disable_segment_from_index_task import disable_segment_from_index_task
 
- from tasks.document_indexing_task import document_indexing_task
 
- from tasks.document_indexing_update_task import document_indexing_update_task
 
- from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
 
- from tasks.recover_document_indexing_task import recover_document_indexing_task
 
- from tasks.retry_document_indexing_task import retry_document_indexing_task
 
- from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
 
- class DatasetService:
 
-     @staticmethod
 
-     def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
 
-         query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
 
-             Dataset.created_at.desc()
 
-         )
 
-         if user:
 
-             # get permitted dataset ids
 
-             dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
 
-             permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
 
-             if user.current_role == TenantAccountRole.DATASET_OPERATOR:
 
-                 # only show datasets that the user has permission to access
 
-                 if permitted_dataset_ids:
 
-                     query = query.filter(Dataset.id.in_(permitted_dataset_ids))
 
-                 else:
 
-                     return [], 0
 
-             else:
 
-                 # show all datasets that the user has permission to access
 
-                 if permitted_dataset_ids:
 
-                     query = query.filter(
 
-                         db.or_(
 
-                             Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
 
-                             db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),
 
-                             db.and_(
 
-                                 Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
 
-                                 Dataset.id.in_(permitted_dataset_ids),
 
-                             ),
 
-                         )
 
-                     )
 
-                 else:
 
-                     query = query.filter(
 
-                         db.or_(
 
-                             Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
 
-                             db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),
 
-                         )
 
-                     )
 
-         else:
 
-             # if no user, only show datasets that are shared with all team members
 
-             query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
 
-         if search:
 
-             query = query.filter(Dataset.name.ilike(f"%{search}%"))
 
-         if tag_ids:
 
-             target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
 
-             if target_ids:
 
-                 query = query.filter(Dataset.id.in_(target_ids))
 
-             else:
 
-                 return [], 0
 
-         datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
 
-         return datasets.items, datasets.total
 
-     @staticmethod
 
-     def get_process_rules(dataset_id):
 
-         # get the latest process rule
 
-         dataset_process_rule = (
 
-             db.session.query(DatasetProcessRule)
 
-             .filter(DatasetProcessRule.dataset_id == dataset_id)
 
-             .order_by(DatasetProcessRule.created_at.desc())
 
-             .limit(1)
 
-             .one_or_none()
 
-         )
 
-         if dataset_process_rule:
 
-             mode = dataset_process_rule.mode
 
-             rules = dataset_process_rule.rules_dict
 
-         else:
 
-             mode = DocumentService.DEFAULT_RULES["mode"]
 
-             rules = DocumentService.DEFAULT_RULES["rules"]
 
-         return {"mode": mode, "rules": rules}
 
-     @staticmethod
 
-     def get_datasets_by_ids(ids, tenant_id):
 
-         datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
 
-             page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
 
-         )
 
-         return datasets.items, datasets.total
 
-     @staticmethod
 
-     def create_empty_dataset(
 
-         tenant_id: str, name: str, indexing_technique: Optional[str], account: Account, permission: Optional[str]
 
-     ):
 
-         # check if dataset name already exists
 
-         if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
 
-             raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
 
-         embedding_model = None
 
-         if indexing_technique == "high_quality":
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_default_model_instance(
 
-                 tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
 
-             )
 
-         dataset = Dataset(name=name, indexing_technique=indexing_technique)
 
-         # dataset = Dataset(name=name, provider=provider, config=config)
 
-         dataset.created_by = account.id
 
-         dataset.updated_by = account.id
 
-         dataset.tenant_id = tenant_id
 
-         dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
 
-         dataset.embedding_model = embedding_model.model if embedding_model else None
 
-         dataset.permission = permission if permission else DatasetPermissionEnum.ONLY_ME
 
-         db.session.add(dataset)
 
-         db.session.commit()
 
-         return dataset
 
-     @staticmethod
 
-     def get_dataset(dataset_id):
 
-         return Dataset.query.filter_by(id=dataset_id).first()
 
-     @staticmethod
 
-     def check_dataset_model_setting(dataset):
 
-         if dataset.indexing_technique == "high_quality":
 
-             try:
 
-                 model_manager = ModelManager()
 
-                 model_manager.get_model_instance(
 
-                     tenant_id=dataset.tenant_id,
 
-                     provider=dataset.embedding_model_provider,
 
-                     model_type=ModelType.TEXT_EMBEDDING,
 
-                     model=dataset.embedding_model,
 
-                 )
 
-             except LLMBadRequestError:
 
-                 raise ValueError(
 
-                     "No Embedding Model available. Please configure a valid provider "
 
-                     "in the Settings -> Model Provider."
 
-                 )
 
-             except ProviderTokenNotInitError as ex:
 
-                 raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}")
 
-     @staticmethod
 
-     def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
 
-         try:
 
-             model_manager = ModelManager()
 
-             model_manager.get_model_instance(
 
-                 tenant_id=tenant_id,
 
-                 provider=embedding_model_provider,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 model=embedding_model,
 
-             )
 
-         except LLMBadRequestError:
 
-             raise ValueError(
 
-                 "No Embedding Model available. Please configure a valid provider " "in the Settings -> Model Provider."
 
-             )
 
-         except ProviderTokenNotInitError as ex:
 
-             raise ValueError(f"The dataset in unavailable, due to: " f"{ex.description}")
 
-     @staticmethod
 
-     def update_dataset(dataset_id, data, user):
 
-         data.pop("partial_member_list", None)
 
-         filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         DatasetService.check_dataset_permission(dataset, user)
 
-         action = None
 
-         if dataset.indexing_technique != data["indexing_technique"]:
 
-             # if update indexing_technique
 
-             if data["indexing_technique"] == "economy":
 
-                 action = "remove"
 
-                 filtered_data["embedding_model"] = None
 
-                 filtered_data["embedding_model_provider"] = None
 
-                 filtered_data["collection_binding_id"] = None
 
-             elif data["indexing_technique"] == "high_quality":
 
-                 action = "add"
 
-                 # get embedding model setting
 
-                 try:
 
-                     model_manager = ModelManager()
 
-                     embedding_model = model_manager.get_model_instance(
 
-                         tenant_id=current_user.current_tenant_id,
 
-                         provider=data["embedding_model_provider"],
 
-                         model_type=ModelType.TEXT_EMBEDDING,
 
-                         model=data["embedding_model"],
 
-                     )
 
-                     filtered_data["embedding_model"] = embedding_model.model
 
-                     filtered_data["embedding_model_provider"] = embedding_model.provider
 
-                     dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                         embedding_model.provider, embedding_model.model
 
-                     )
 
-                     filtered_data["collection_binding_id"] = dataset_collection_binding.id
 
-                 except LLMBadRequestError:
 
-                     raise ValueError(
 
-                         "No Embedding Model available. Please configure a valid provider "
 
-                         "in the Settings -> Model Provider."
 
-                     )
 
-                 except ProviderTokenNotInitError as ex:
 
-                     raise ValueError(ex.description)
 
-         else:
 
-             if (
 
-                 data["embedding_model_provider"] != dataset.embedding_model_provider
 
-                 or data["embedding_model"] != dataset.embedding_model
 
-             ):
 
-                 action = "update"
 
-                 try:
 
-                     model_manager = ModelManager()
 
-                     embedding_model = model_manager.get_model_instance(
 
-                         tenant_id=current_user.current_tenant_id,
 
-                         provider=data["embedding_model_provider"],
 
-                         model_type=ModelType.TEXT_EMBEDDING,
 
-                         model=data["embedding_model"],
 
-                     )
 
-                     filtered_data["embedding_model"] = embedding_model.model
 
-                     filtered_data["embedding_model_provider"] = embedding_model.provider
 
-                     dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                         embedding_model.provider, embedding_model.model
 
-                     )
 
-                     filtered_data["collection_binding_id"] = dataset_collection_binding.id
 
-                 except LLMBadRequestError:
 
-                     raise ValueError(
 
-                         "No Embedding Model available. Please configure a valid provider "
 
-                         "in the Settings -> Model Provider."
 
-                     )
 
-                 except ProviderTokenNotInitError as ex:
 
-                     raise ValueError(ex.description)
 
-         filtered_data["updated_by"] = user.id
 
-         filtered_data["updated_at"] = datetime.datetime.now()
 
-         # update Retrieval model
 
-         filtered_data["retrieval_model"] = data["retrieval_model"]
 
-         dataset.query.filter_by(id=dataset_id).update(filtered_data)
 
-         db.session.commit()
 
-         if action:
 
-             deal_dataset_vector_index_task.delay(dataset_id, action)
 
-         return dataset
 
-     @staticmethod
 
-     def delete_dataset(dataset_id, user):
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         if dataset is None:
 
-             return False
 
-         DatasetService.check_dataset_permission(dataset, user)
 
-         dataset_was_deleted.send(dataset)
 
-         db.session.delete(dataset)
 
-         db.session.commit()
 
-         return True
 
-     @staticmethod
 
-     def dataset_use_check(dataset_id) -> bool:
 
-         count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
 
-         if count > 0:
 
-             return True
 
-         return False
 
-     @staticmethod
 
-     def check_dataset_permission(dataset, user):
 
-         if dataset.tenant_id != user.current_tenant_id:
 
-             logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
 
-             raise NoPermissionError("You do not have permission to access this dataset.")
 
-         if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
 
-             logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
 
-             raise NoPermissionError("You do not have permission to access this dataset.")
 
-         if dataset.permission == "partial_members":
 
-             user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
 
-             if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
 
-                 logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
 
-                 raise NoPermissionError("You do not have permission to access this dataset.")
 
-     @staticmethod
 
-     def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
 
-         if dataset.permission == DatasetPermissionEnum.ONLY_ME:
 
-             if dataset.created_by != user.id:
 
-                 raise NoPermissionError("You do not have permission to access this dataset.")
 
-         elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
 
-             if not any(
 
-                 dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
 
-             ):
 
-                 raise NoPermissionError("You do not have permission to access this dataset.")
 
-     @staticmethod
 
-     def get_dataset_queries(dataset_id: str, page: int, per_page: int):
 
-         dataset_queries = (
 
-             DatasetQuery.query.filter_by(dataset_id=dataset_id)
 
-             .order_by(db.desc(DatasetQuery.created_at))
 
-             .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
 
-         )
 
-         return dataset_queries.items, dataset_queries.total
 
-     @staticmethod
 
-     def get_related_apps(dataset_id: str):
 
-         return (
 
-             AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
 
-             .order_by(db.desc(AppDatasetJoin.created_at))
 
-             .all()
 
-         )
 
- class DocumentService:
 
-     DEFAULT_RULES = {
 
-         "mode": "custom",
 
-         "rules": {
 
-             "pre_processing_rules": [
 
-                 {"id": "remove_extra_spaces", "enabled": True},
 
-                 {"id": "remove_urls_emails", "enabled": False},
 
-             ],
 
-             "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
 
-         },
 
-     }
 
-     DOCUMENT_METADATA_SCHEMA = {
 
-         "book": {
 
-             "title": str,
 
-             "language": str,
 
-             "author": str,
 
-             "publisher": str,
 
-             "publication_date": str,
 
-             "isbn": str,
 
-             "category": str,
 
-         },
 
-         "web_page": {
 
-             "title": str,
 
-             "url": str,
 
-             "language": str,
 
-             "publish_date": str,
 
-             "author/publisher": str,
 
-             "topic/keywords": str,
 
-             "description": str,
 
-         },
 
-         "paper": {
 
-             "title": str,
 
-             "language": str,
 
-             "author": str,
 
-             "publish_date": str,
 
-             "journal/conference_name": str,
 
-             "volume/issue/page_numbers": str,
 
-             "doi": str,
 
-             "topic/keywords": str,
 
-             "abstract": str,
 
-         },
 
-         "social_media_post": {
 
-             "platform": str,
 
-             "author/username": str,
 
-             "publish_date": str,
 
-             "post_url": str,
 
-             "topic/tags": str,
 
-         },
 
-         "wikipedia_entry": {
 
-             "title": str,
 
-             "language": str,
 
-             "web_page_url": str,
 
-             "last_edit_date": str,
 
-             "editor/contributor": str,
 
-             "summary/introduction": str,
 
-         },
 
-         "personal_document": {
 
-             "title": str,
 
-             "author": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "document_type": str,
 
-             "tags/category": str,
 
-         },
 
-         "business_document": {
 
-             "title": str,
 
-             "author": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "document_type": str,
 
-             "department/team": str,
 
-         },
 
-         "im_chat_log": {
 
-             "chat_platform": str,
 
-             "chat_participants/group_name": str,
 
-             "start_date": str,
 
-             "end_date": str,
 
-             "summary": str,
 
-         },
 
-         "synced_from_notion": {
 
-             "title": str,
 
-             "language": str,
 
-             "author/creator": str,
 
-             "creation_date": str,
 
-             "last_modified_date": str,
 
-             "notion_page_link": str,
 
-             "category/tags": str,
 
-             "description": str,
 
-         },
 
-         "synced_from_github": {
 
-             "repository_name": str,
 
-             "repository_description": str,
 
-             "repository_owner/organization": str,
 
-             "code_filename": str,
 
-             "code_file_path": str,
 
-             "programming_language": str,
 
-             "github_link": str,
 
-             "open_source_license": str,
 
-             "commit_date": str,
 
-             "commit_author": str,
 
-         },
 
-         "others": dict,
 
-     }
 
-     @staticmethod
 
-     def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
 
-         document = (
 
-             db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
 
-         )
 
-         return document
 
-     @staticmethod
 
-     def get_document_by_id(document_id: str) -> Optional[Document]:
 
-         document = db.session.query(Document).filter(Document.id == document_id).first()
 
-         return document
 
-     @staticmethod
 
-     def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
 
-         documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
 
-         return documents
 
-     @staticmethod
 
-     def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
 
-         documents = (
 
-             db.session.query(Document)
 
-             .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
 
-             .all()
 
-         )
 
-         return documents
 
-     @staticmethod
 
-     def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
 
-         documents = (
 
-             db.session.query(Document)
 
-             .filter(
 
-                 Document.batch == batch,
 
-                 Document.dataset_id == dataset_id,
 
-                 Document.tenant_id == current_user.current_tenant_id,
 
-             )
 
-             .all()
 
-         )
 
-         return documents
 
-     @staticmethod
 
-     def get_document_file_detail(file_id: str):
 
-         file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
 
-         return file_detail
 
-     @staticmethod
 
-     def check_archived(document):
 
-         if document.archived:
 
-             return True
 
-         else:
 
-             return False
 
-     @staticmethod
 
-     def delete_document(document):
 
-         # trigger document_was_deleted signal
 
-         file_id = None
 
-         if document.data_source_type == "upload_file":
 
-             if document.data_source_info:
 
-                 data_source_info = document.data_source_info_dict
 
-                 if data_source_info and "upload_file_id" in data_source_info:
 
-                     file_id = data_source_info["upload_file_id"]
 
-         document_was_deleted.send(
 
-             document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
 
-         )
 
-         db.session.delete(document)
 
-         db.session.commit()
 
-     @staticmethod
 
-     def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
 
-         dataset = DatasetService.get_dataset(dataset_id)
 
-         if not dataset:
 
-             raise ValueError("Dataset not found.")
 
-         document = DocumentService.get_document(dataset_id, document_id)
 
-         if not document:
 
-             raise ValueError("Document not found.")
 
-         if document.tenant_id != current_user.current_tenant_id:
 
-             raise ValueError("No permission.")
 
-         document.name = name
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         return document
 
-     @staticmethod
 
-     def pause_document(document):
 
-         if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
 
-             raise DocumentIndexingError()
 
-         # update document to be paused
 
-         document.is_paused = True
 
-         document.paused_by = current_user.id
 
-         document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # set document paused flag
 
-         indexing_cache_key = "document_{}_is_paused".format(document.id)
 
-         redis_client.setnx(indexing_cache_key, "True")
 
-     @staticmethod
 
-     def recover_document(document):
 
-         if not document.is_paused:
 
-             raise DocumentIndexingError()
 
-         # update document to be recover
 
-         document.is_paused = False
 
-         document.paused_by = None
 
-         document.paused_at = None
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # delete paused flag
 
-         indexing_cache_key = "document_{}_is_paused".format(document.id)
 
-         redis_client.delete(indexing_cache_key)
 
-         # trigger async task
 
-         recover_document_indexing_task.delay(document.dataset_id, document.id)
 
-     @staticmethod
 
-     def retry_document(dataset_id: str, documents: list[Document]):
 
-         for document in documents:
 
-             # add retry flag
 
-             retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
 
-             cache_result = redis_client.get(retry_indexing_cache_key)
 
-             if cache_result is not None:
 
-                 raise ValueError("Document is being retried, please try again later")
 
-             # retry document indexing
 
-             document.indexing_status = "waiting"
 
-             db.session.add(document)
 
-             db.session.commit()
 
-             redis_client.setex(retry_indexing_cache_key, 600, 1)
 
-         # trigger async task
 
-         document_ids = [document.id for document in documents]
 
-         retry_document_indexing_task.delay(dataset_id, document_ids)
 
-     @staticmethod
 
-     def sync_website_document(dataset_id: str, document: Document):
 
-         # add sync flag
 
-         sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
 
-         cache_result = redis_client.get(sync_indexing_cache_key)
 
-         if cache_result is not None:
 
-             raise ValueError("Document is being synced, please try again later")
 
-         # sync document indexing
 
-         document.indexing_status = "waiting"
 
-         data_source_info = document.data_source_info_dict
 
-         data_source_info["mode"] = "scrape"
 
-         document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         redis_client.setex(sync_indexing_cache_key, 600, 1)
 
-         sync_website_document_indexing_task.delay(dataset_id, document.id)
 
-     @staticmethod
 
-     def get_documents_position(dataset_id):
 
-         document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
 
-         if document:
 
-             return document.position + 1
 
-         else:
 
-             return 1
 
-     @staticmethod
 
-     def save_document_with_dataset_id(
 
-         dataset: Dataset,
 
-         document_data: dict,
 
-         account: Account,
 
-         dataset_process_rule: Optional[DatasetProcessRule] = None,
 
-         created_from: str = "web",
 
-     ):
 
-         # check document limit
 
-         features = FeatureService.get_features(current_user.current_tenant_id)
 
-         if features.billing.enabled:
 
-             if "original_document_id" not in document_data or not document_data["original_document_id"]:
 
-                 count = 0
 
-                 if document_data["data_source"]["type"] == "upload_file":
 
-                     upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
 
-                     count = len(upload_file_list)
 
-                 elif document_data["data_source"]["type"] == "notion_import":
 
-                     notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
 
-                     for notion_info in notion_info_list:
 
-                         count = count + len(notion_info["pages"])
 
-                 elif document_data["data_source"]["type"] == "website_crawl":
 
-                     website_info = document_data["data_source"]["info_list"]["website_info_list"]
 
-                     count = len(website_info["urls"])
 
-                 batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 
-                 if count > batch_upload_limit:
 
-                     raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 
-                 DocumentService.check_documents_upload_quota(count, features)
 
-         # if dataset is empty, update dataset data_source_type
 
-         if not dataset.data_source_type:
 
-             dataset.data_source_type = document_data["data_source"]["type"]
 
-         if not dataset.indexing_technique:
 
-             if (
 
-                 "indexing_technique" not in document_data
 
-                 or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST
 
-             ):
 
-                 raise ValueError("Indexing technique is required")
 
-             dataset.indexing_technique = document_data["indexing_technique"]
 
-             if document_data["indexing_technique"] == "high_quality":
 
-                 model_manager = ModelManager()
 
-                 embedding_model = model_manager.get_default_model_instance(
 
-                     tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
 
-                 )
 
-                 dataset.embedding_model = embedding_model.model
 
-                 dataset.embedding_model_provider = embedding_model.provider
 
-                 dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                     embedding_model.provider, embedding_model.model
 
-                 )
 
-                 dataset.collection_binding_id = dataset_collection_binding.id
 
-                 if not dataset.retrieval_model:
 
-                     default_retrieval_model = {
 
-                         "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 
-                         "reranking_enable": False,
 
-                         "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 
-                         "top_k": 2,
 
-                         "score_threshold_enabled": False,
 
-                     }
 
-                     dataset.retrieval_model = (
 
-                         document_data.get("retrieval_model")
 
-                         if document_data.get("retrieval_model")
 
-                         else default_retrieval_model
 
-                     )
 
-         documents = []
 
-         batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
 
-         if document_data.get("original_document_id"):
 
-             document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
 
-             documents.append(document)
 
-         else:
 
-             # save process rule
 
-             if not dataset_process_rule:
 
-                 process_rule = document_data["process_rule"]
 
-                 if process_rule["mode"] == "custom":
 
-                     dataset_process_rule = DatasetProcessRule(
 
-                         dataset_id=dataset.id,
 
-                         mode=process_rule["mode"],
 
-                         rules=json.dumps(process_rule["rules"]),
 
-                         created_by=account.id,
 
-                     )
 
-                 elif process_rule["mode"] == "automatic":
 
-                     dataset_process_rule = DatasetProcessRule(
 
-                         dataset_id=dataset.id,
 
-                         mode=process_rule["mode"],
 
-                         rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 
-                         created_by=account.id,
 
-                     )
 
-                 db.session.add(dataset_process_rule)
 
-                 db.session.commit()
 
-             position = DocumentService.get_documents_position(dataset.id)
 
-             document_ids = []
 
-             duplicate_document_ids = []
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
 
-                 for file_id in upload_file_list:
 
-                     file = (
 
-                         db.session.query(UploadFile)
 
-                         .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
 
-                         .first()
 
-                     )
 
-                     # raise error if file not found
 
-                     if not file:
 
-                         raise FileNotExistsError()
 
-                     file_name = file.name
 
-                     data_source_info = {
 
-                         "upload_file_id": file_id,
 
-                     }
 
-                     # check duplicate
 
-                     if document_data.get("duplicate", False):
 
-                         document = Document.query.filter_by(
 
-                             dataset_id=dataset.id,
 
-                             tenant_id=current_user.current_tenant_id,
 
-                             data_source_type="upload_file",
 
-                             enabled=True,
 
-                             name=file_name,
 
-                         ).first()
 
-                         if document:
 
-                             document.dataset_process_rule_id = dataset_process_rule.id
 
-                             document.updated_at = datetime.datetime.utcnow()
 
-                             document.created_from = created_from
 
-                             document.doc_form = document_data["doc_form"]
 
-                             document.doc_language = document_data["doc_language"]
 
-                             document.data_source_info = json.dumps(data_source_info)
 
-                             document.batch = batch
 
-                             document.indexing_status = "waiting"
 
-                             db.session.add(document)
 
-                             documents.append(document)
 
-                             duplicate_document_ids.append(document.id)
 
-                             continue
 
-                     document = DocumentService.build_document(
 
-                         dataset,
 
-                         dataset_process_rule.id,
 
-                         document_data["data_source"]["type"],
 
-                         document_data["doc_form"],
 
-                         document_data["doc_language"],
 
-                         data_source_info,
 
-                         created_from,
 
-                         position,
 
-                         account,
 
-                         file_name,
 
-                         batch,
 
-                     )
 
-                     db.session.add(document)
 
-                     db.session.flush()
 
-                     document_ids.append(document.id)
 
-                     documents.append(document)
 
-                     position += 1
 
-             elif document_data["data_source"]["type"] == "notion_import":
 
-                 notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
 
-                 exist_page_ids = []
 
-                 exist_document = {}
 
-                 documents = Document.query.filter_by(
 
-                     dataset_id=dataset.id,
 
-                     tenant_id=current_user.current_tenant_id,
 
-                     data_source_type="notion_import",
 
-                     enabled=True,
 
-                 ).all()
 
-                 if documents:
 
-                     for document in documents:
 
-                         data_source_info = json.loads(document.data_source_info)
 
-                         exist_page_ids.append(data_source_info["notion_page_id"])
 
-                         exist_document[data_source_info["notion_page_id"]] = document.id
 
-                 for notion_info in notion_info_list:
 
-                     workspace_id = notion_info["workspace_id"]
 
-                     data_source_binding = DataSourceOauthBinding.query.filter(
 
-                         db.and_(
 
-                             DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
 
-                             DataSourceOauthBinding.provider == "notion",
 
-                             DataSourceOauthBinding.disabled == False,
 
-                             DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
 
-                         )
 
-                     ).first()
 
-                     if not data_source_binding:
 
-                         raise ValueError("Data source binding not found.")
 
-                     for page in notion_info["pages"]:
 
-                         if page["page_id"] not in exist_page_ids:
 
-                             data_source_info = {
 
-                                 "notion_workspace_id": workspace_id,
 
-                                 "notion_page_id": page["page_id"],
 
-                                 "notion_page_icon": page["page_icon"],
 
-                                 "type": page["type"],
 
-                             }
 
-                             document = DocumentService.build_document(
 
-                                 dataset,
 
-                                 dataset_process_rule.id,
 
-                                 document_data["data_source"]["type"],
 
-                                 document_data["doc_form"],
 
-                                 document_data["doc_language"],
 
-                                 data_source_info,
 
-                                 created_from,
 
-                                 position,
 
-                                 account,
 
-                                 page["page_name"],
 
-                                 batch,
 
-                             )
 
-                             db.session.add(document)
 
-                             db.session.flush()
 
-                             document_ids.append(document.id)
 
-                             documents.append(document)
 
-                             position += 1
 
-                         else:
 
-                             exist_document.pop(page["page_id"])
 
-                 # delete not selected documents
 
-                 if len(exist_document) > 0:
 
-                     clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
 
-             elif document_data["data_source"]["type"] == "website_crawl":
 
-                 website_info = document_data["data_source"]["info_list"]["website_info_list"]
 
-                 urls = website_info["urls"]
 
-                 for url in urls:
 
-                     data_source_info = {
 
-                         "url": url,
 
-                         "provider": website_info["provider"],
 
-                         "job_id": website_info["job_id"],
 
-                         "only_main_content": website_info.get("only_main_content", False),
 
-                         "mode": "crawl",
 
-                     }
 
-                     if len(url) > 255:
 
-                         document_name = url[:200] + "..."
 
-                     else:
 
-                         document_name = url
 
-                     document = DocumentService.build_document(
 
-                         dataset,
 
-                         dataset_process_rule.id,
 
-                         document_data["data_source"]["type"],
 
-                         document_data["doc_form"],
 
-                         document_data["doc_language"],
 
-                         data_source_info,
 
-                         created_from,
 
-                         position,
 
-                         account,
 
-                         document_name,
 
-                         batch,
 
-                     )
 
-                     db.session.add(document)
 
-                     db.session.flush()
 
-                     document_ids.append(document.id)
 
-                     documents.append(document)
 
-                     position += 1
 
-             db.session.commit()
 
-             # trigger async task
 
-             if document_ids:
 
-                 document_indexing_task.delay(dataset.id, document_ids)
 
-             if duplicate_document_ids:
 
-                 duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
 
-         return documents, batch
 
-     @staticmethod
 
-     def check_documents_upload_quota(count: int, features: FeatureModel):
 
-         can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
 
-         if count > can_upload_size:
 
-             raise ValueError(
 
-                 f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
 
-             )
 
-     @staticmethod
 
-     def build_document(
 
-         dataset: Dataset,
 
-         process_rule_id: str,
 
-         data_source_type: str,
 
-         document_form: str,
 
-         document_language: str,
 
-         data_source_info: dict,
 
-         created_from: str,
 
-         position: int,
 
-         account: Account,
 
-         name: str,
 
-         batch: str,
 
-     ):
 
-         document = Document(
 
-             tenant_id=dataset.tenant_id,
 
-             dataset_id=dataset.id,
 
-             position=position,
 
-             data_source_type=data_source_type,
 
-             data_source_info=json.dumps(data_source_info),
 
-             dataset_process_rule_id=process_rule_id,
 
-             batch=batch,
 
-             name=name,
 
-             created_from=created_from,
 
-             created_by=account.id,
 
-             doc_form=document_form,
 
-             doc_language=document_language,
 
-         )
 
-         return document
 
-     @staticmethod
 
-     def get_tenant_documents_count():
 
-         documents_count = Document.query.filter(
 
-             Document.completed_at.isnot(None),
 
-             Document.enabled == True,
 
-             Document.archived == False,
 
-             Document.tenant_id == current_user.current_tenant_id,
 
-         ).count()
 
-         return documents_count
 
-     @staticmethod
 
-     def update_document_with_dataset_id(
 
-         dataset: Dataset,
 
-         document_data: dict,
 
-         account: Account,
 
-         dataset_process_rule: Optional[DatasetProcessRule] = None,
 
-         created_from: str = "web",
 
-     ):
 
-         DatasetService.check_dataset_model_setting(dataset)
 
-         document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
 
-         if document.display_status != "available":
 
-             raise ValueError("Document is not available")
 
-         # update document name
 
-         if document_data.get("name"):
 
-             document.name = document_data["name"]
 
-         # save process rule
 
-         if document_data.get("process_rule"):
 
-             process_rule = document_data["process_rule"]
 
-             if process_rule["mode"] == "custom":
 
-                 dataset_process_rule = DatasetProcessRule(
 
-                     dataset_id=dataset.id,
 
-                     mode=process_rule["mode"],
 
-                     rules=json.dumps(process_rule["rules"]),
 
-                     created_by=account.id,
 
-                 )
 
-             elif process_rule["mode"] == "automatic":
 
-                 dataset_process_rule = DatasetProcessRule(
 
-                     dataset_id=dataset.id,
 
-                     mode=process_rule["mode"],
 
-                     rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
 
-                     created_by=account.id,
 
-                 )
 
-             db.session.add(dataset_process_rule)
 
-             db.session.commit()
 
-             document.dataset_process_rule_id = dataset_process_rule.id
 
-         # update document data source
 
-         if document_data.get("data_source"):
 
-             file_name = ""
 
-             data_source_info = {}
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
 
-                 for file_id in upload_file_list:
 
-                     file = (
 
-                         db.session.query(UploadFile)
 
-                         .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
 
-                         .first()
 
-                     )
 
-                     # raise error if file not found
 
-                     if not file:
 
-                         raise FileNotExistsError()
 
-                     file_name = file.name
 
-                     data_source_info = {
 
-                         "upload_file_id": file_id,
 
-                     }
 
-             elif document_data["data_source"]["type"] == "notion_import":
 
-                 notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
 
-                 for notion_info in notion_info_list:
 
-                     workspace_id = notion_info["workspace_id"]
 
-                     data_source_binding = DataSourceOauthBinding.query.filter(
 
-                         db.and_(
 
-                             DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
 
-                             DataSourceOauthBinding.provider == "notion",
 
-                             DataSourceOauthBinding.disabled == False,
 
-                             DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
 
-                         )
 
-                     ).first()
 
-                     if not data_source_binding:
 
-                         raise ValueError("Data source binding not found.")
 
-                     for page in notion_info["pages"]:
 
-                         data_source_info = {
 
-                             "notion_workspace_id": workspace_id,
 
-                             "notion_page_id": page["page_id"],
 
-                             "notion_page_icon": page["page_icon"],
 
-                             "type": page["type"],
 
-                         }
 
-             elif document_data["data_source"]["type"] == "website_crawl":
 
-                 website_info = document_data["data_source"]["info_list"]["website_info_list"]
 
-                 urls = website_info["urls"]
 
-                 for url in urls:
 
-                     data_source_info = {
 
-                         "url": url,
 
-                         "provider": website_info["provider"],
 
-                         "job_id": website_info["job_id"],
 
-                         "only_main_content": website_info.get("only_main_content", False),
 
-                         "mode": "crawl",
 
-                     }
 
-             document.data_source_type = document_data["data_source"]["type"]
 
-             document.data_source_info = json.dumps(data_source_info)
 
-             document.name = file_name
 
-         # update document to be waiting
 
-         document.indexing_status = "waiting"
 
-         document.completed_at = None
 
-         document.processing_started_at = None
 
-         document.parsing_completed_at = None
 
-         document.cleaning_completed_at = None
 
-         document.splitting_completed_at = None
 
-         document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-         document.created_from = created_from
 
-         document.doc_form = document_data["doc_form"]
 
-         db.session.add(document)
 
-         db.session.commit()
 
-         # update document segment
 
-         update_params = {DocumentSegment.status: "re_segment"}
 
-         DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
 
-         db.session.commit()
 
-         # trigger async task
 
-         document_indexing_update_task.delay(document.dataset_id, document.id)
 
-         return document
 
-     @staticmethod
 
-     def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
 
-         features = FeatureService.get_features(current_user.current_tenant_id)
 
-         if features.billing.enabled:
 
-             count = 0
 
-             if document_data["data_source"]["type"] == "upload_file":
 
-                 upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]
 
-                 count = len(upload_file_list)
 
-             elif document_data["data_source"]["type"] == "notion_import":
 
-                 notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]
 
-                 for notion_info in notion_info_list:
 
-                     count = count + len(notion_info["pages"])
 
-             elif document_data["data_source"]["type"] == "website_crawl":
 
-                 website_info = document_data["data_source"]["info_list"]["website_info_list"]
 
-                 count = len(website_info["urls"])
 
-             batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
 
-             if count > batch_upload_limit:
 
-                 raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
 
-             DocumentService.check_documents_upload_quota(count, features)
 
-         embedding_model = None
 
-         dataset_collection_binding_id = None
 
-         retrieval_model = None
 
-         if document_data["indexing_technique"] == "high_quality":
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_default_model_instance(
 
-                 tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
 
-             )
 
-             dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
 
-                 embedding_model.provider, embedding_model.model
 
-             )
 
-             dataset_collection_binding_id = dataset_collection_binding.id
 
-             if document_data.get("retrieval_model"):
 
-                 retrieval_model = document_data["retrieval_model"]
 
-             else:
 
-                 default_retrieval_model = {
 
-                     "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
 
-                     "reranking_enable": False,
 
-                     "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
 
-                     "top_k": 2,
 
-                     "score_threshold_enabled": False,
 
-                 }
 
-                 retrieval_model = default_retrieval_model
 
-         # save dataset
 
-         dataset = Dataset(
 
-             tenant_id=tenant_id,
 
-             name="",
 
-             data_source_type=document_data["data_source"]["type"],
 
-             indexing_technique=document_data["indexing_technique"],
 
-             created_by=account.id,
 
-             embedding_model=embedding_model.model if embedding_model else None,
 
-             embedding_model_provider=embedding_model.provider if embedding_model else None,
 
-             collection_binding_id=dataset_collection_binding_id,
 
-             retrieval_model=retrieval_model,
 
-         )
 
-         db.session.add(dataset)
 
-         db.session.flush()
 
-         documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
 
-         cut_length = 18
 
-         cut_name = documents[0].name[:cut_length]
 
-         dataset.name = cut_name + "..."
 
-         dataset.description = "useful for when you want to answer queries about the " + documents[0].name
 
-         db.session.commit()
 
-         return dataset, documents, batch
 
-     @classmethod
 
-     def document_create_args_validate(cls, args: dict):
 
-         if "original_document_id" not in args or not args["original_document_id"]:
 
-             DocumentService.data_source_args_validate(args)
 
-             DocumentService.process_rule_args_validate(args)
 
-         else:
 
-             if ("data_source" not in args and not args["data_source"]) and (
 
-                 "process_rule" not in args and not args["process_rule"]
 
-             ):
 
-                 raise ValueError("Data source or Process rule is required")
 
-             else:
 
-                 if args.get("data_source"):
 
-                     DocumentService.data_source_args_validate(args)
 
-                 if args.get("process_rule"):
 
-                     DocumentService.process_rule_args_validate(args)
 
-     @classmethod
 
-     def data_source_args_validate(cls, args: dict):
 
-         if "data_source" not in args or not args["data_source"]:
 
-             raise ValueError("Data source is required")
 
-         if not isinstance(args["data_source"], dict):
 
-             raise ValueError("Data source is invalid")
 
-         if "type" not in args["data_source"] or not args["data_source"]["type"]:
 
-             raise ValueError("Data source type is required")
 
-         if args["data_source"]["type"] not in Document.DATA_SOURCES:
 
-             raise ValueError("Data source type is invalid")
 
-         if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]:
 
-             raise ValueError("Data source info is required")
 
-         if args["data_source"]["type"] == "upload_file":
 
-             if (
 
-                 "file_info_list" not in args["data_source"]["info_list"]
 
-                 or not args["data_source"]["info_list"]["file_info_list"]
 
-             ):
 
-                 raise ValueError("File source info is required")
 
-         if args["data_source"]["type"] == "notion_import":
 
-             if (
 
-                 "notion_info_list" not in args["data_source"]["info_list"]
 
-                 or not args["data_source"]["info_list"]["notion_info_list"]
 
-             ):
 
-                 raise ValueError("Notion source info is required")
 
-         if args["data_source"]["type"] == "website_crawl":
 
-             if (
 
-                 "website_info_list" not in args["data_source"]["info_list"]
 
-                 or not args["data_source"]["info_list"]["website_info_list"]
 
-             ):
 
-                 raise ValueError("Website source info is required")
 
-     @classmethod
 
-     def process_rule_args_validate(cls, args: dict):
 
-         if "process_rule" not in args or not args["process_rule"]:
 
-             raise ValueError("Process rule is required")
 
-         if not isinstance(args["process_rule"], dict):
 
-             raise ValueError("Process rule is invalid")
 
-         if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
 
-             raise ValueError("Process rule mode is required")
 
-         if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
 
-             raise ValueError("Process rule mode is invalid")
 
-         if args["process_rule"]["mode"] == "automatic":
 
-             args["process_rule"]["rules"] = {}
 
-         else:
 
-             if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
 
-                 raise ValueError("Process rule rules is required")
 
-             if not isinstance(args["process_rule"]["rules"], dict):
 
-                 raise ValueError("Process rule rules is invalid")
 
-             if (
 
-                 "pre_processing_rules" not in args["process_rule"]["rules"]
 
-                 or args["process_rule"]["rules"]["pre_processing_rules"] is None
 
-             ):
 
-                 raise ValueError("Process rule pre_processing_rules is required")
 
-             if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
 
-                 raise ValueError("Process rule pre_processing_rules is invalid")
 
-             unique_pre_processing_rule_dicts = {}
 
-             for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
 
-                 if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
 
-                     raise ValueError("Process rule pre_processing_rules id is required")
 
-                 if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 
-                     raise ValueError("Process rule pre_processing_rules id is invalid")
 
-                 if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
 
-                     raise ValueError("Process rule pre_processing_rules enabled is required")
 
-                 if not isinstance(pre_processing_rule["enabled"], bool):
 
-                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 
-                 unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
 
-             args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
 
-             if (
 
-                 "segmentation" not in args["process_rule"]["rules"]
 
-                 or args["process_rule"]["rules"]["segmentation"] is None
 
-             ):
 
-                 raise ValueError("Process rule segmentation is required")
 
-             if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
 
-                 raise ValueError("Process rule segmentation is invalid")
 
-             if (
 
-                 "separator" not in args["process_rule"]["rules"]["segmentation"]
 
-                 or not args["process_rule"]["rules"]["segmentation"]["separator"]
 
-             ):
 
-                 raise ValueError("Process rule segmentation separator is required")
 
-             if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
 
-                 raise ValueError("Process rule segmentation separator is invalid")
 
-             if (
 
-                 "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
 
-                 or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
 
-             ):
 
-                 raise ValueError("Process rule segmentation max_tokens is required")
 
-             if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
 
-                 raise ValueError("Process rule segmentation max_tokens is invalid")
 
-     @classmethod
 
-     def estimate_args_validate(cls, args: dict):
 
-         if "info_list" not in args or not args["info_list"]:
 
-             raise ValueError("Data source info is required")
 
-         if not isinstance(args["info_list"], dict):
 
-             raise ValueError("Data info is invalid")
 
-         if "process_rule" not in args or not args["process_rule"]:
 
-             raise ValueError("Process rule is required")
 
-         if not isinstance(args["process_rule"], dict):
 
-             raise ValueError("Process rule is invalid")
 
-         if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
 
-             raise ValueError("Process rule mode is required")
 
-         if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
 
-             raise ValueError("Process rule mode is invalid")
 
-         if args["process_rule"]["mode"] == "automatic":
 
-             args["process_rule"]["rules"] = {}
 
-         else:
 
-             if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
 
-                 raise ValueError("Process rule rules is required")
 
-             if not isinstance(args["process_rule"]["rules"], dict):
 
-                 raise ValueError("Process rule rules is invalid")
 
-             if (
 
-                 "pre_processing_rules" not in args["process_rule"]["rules"]
 
-                 or args["process_rule"]["rules"]["pre_processing_rules"] is None
 
-             ):
 
-                 raise ValueError("Process rule pre_processing_rules is required")
 
-             if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
 
-                 raise ValueError("Process rule pre_processing_rules is invalid")
 
-             unique_pre_processing_rule_dicts = {}
 
-             for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
 
-                 if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
 
-                     raise ValueError("Process rule pre_processing_rules id is required")
 
-                 if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
 
-                     raise ValueError("Process rule pre_processing_rules id is invalid")
 
-                 if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
 
-                     raise ValueError("Process rule pre_processing_rules enabled is required")
 
-                 if not isinstance(pre_processing_rule["enabled"], bool):
 
-                     raise ValueError("Process rule pre_processing_rules enabled is invalid")
 
-                 unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
 
-             args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
 
-             if (
 
-                 "segmentation" not in args["process_rule"]["rules"]
 
-                 or args["process_rule"]["rules"]["segmentation"] is None
 
-             ):
 
-                 raise ValueError("Process rule segmentation is required")
 
-             if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
 
-                 raise ValueError("Process rule segmentation is invalid")
 
-             if (
 
-                 "separator" not in args["process_rule"]["rules"]["segmentation"]
 
-                 or not args["process_rule"]["rules"]["segmentation"]["separator"]
 
-             ):
 
-                 raise ValueError("Process rule segmentation separator is required")
 
-             if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
 
-                 raise ValueError("Process rule segmentation separator is invalid")
 
-             if (
 
-                 "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
 
-                 or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
 
-             ):
 
-                 raise ValueError("Process rule segmentation max_tokens is required")
 
-             if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
 
-                 raise ValueError("Process rule segmentation max_tokens is invalid")
 
- class SegmentService:
 
-     @classmethod
 
-     def segment_create_args_validate(cls, args: dict, document: Document):
 
-         if document.doc_form == "qa_model":
 
-             if "answer" not in args or not args["answer"]:
 
-                 raise ValueError("Answer is required")
 
-             if not args["answer"].strip():
 
-                 raise ValueError("Answer is empty")
 
-         if "content" not in args or not args["content"] or not args["content"].strip():
 
-             raise ValueError("Content is empty")
 
-     @classmethod
 
-     def create_segment(cls, args: dict, document: Document, dataset: Dataset):
 
-         content = args["content"]
 
-         doc_id = str(uuid.uuid4())
 
-         segment_hash = helper.generate_text_hash(content)
 
-         tokens = 0
 
-         if dataset.indexing_technique == "high_quality":
 
-             model_manager = ModelManager()
 
-             embedding_model = model_manager.get_model_instance(
 
-                 tenant_id=current_user.current_tenant_id,
 
-                 provider=dataset.embedding_model_provider,
 
-                 model_type=ModelType.TEXT_EMBEDDING,
 
-                 model=dataset.embedding_model,
 
-             )
 
-             # calc embedding use tokens
 
-             tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
 
-         lock_name = "add_segment_lock_document_id_{}".format(document.id)
 
-         with redis_client.lock(lock_name, timeout=600):
 
-             max_position = (
 
-                 db.session.query(func.max(DocumentSegment.position))
 
-                 .filter(DocumentSegment.document_id == document.id)
 
-                 .scalar()
 
-             )
 
-             segment_document = DocumentSegment(
 
-                 tenant_id=current_user.current_tenant_id,
 
-                 dataset_id=document.dataset_id,
 
-                 document_id=document.id,
 
-                 index_node_id=doc_id,
 
-                 index_node_hash=segment_hash,
 
-                 position=max_position + 1 if max_position else 1,
 
-                 content=content,
 
-                 word_count=len(content),
 
-                 tokens=tokens,
 
-                 status="completed",
 
-                 indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 
-                 completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 
-                 created_by=current_user.id,
 
-             )
 
-             if document.doc_form == "qa_model":
 
-                 segment_document.answer = args["answer"]
 
-             db.session.add(segment_document)
 
-             db.session.commit()
 
-             # save vector index
 
-             try:
 
-                 VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset)
 
-             except Exception as e:
 
-                 logging.exception("create segment index failed")
 
-                 segment_document.enabled = False
 
-                 segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-                 segment_document.status = "error"
 
-                 segment_document.error = str(e)
 
-                 db.session.commit()
 
-             segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
 
-             return segment
 
-     @classmethod
 
-     def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
 
-         lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
 
-         with redis_client.lock(lock_name, timeout=600):
 
-             embedding_model = None
 
-             if dataset.indexing_technique == "high_quality":
 
-                 model_manager = ModelManager()
 
-                 embedding_model = model_manager.get_model_instance(
 
-                     tenant_id=current_user.current_tenant_id,
 
-                     provider=dataset.embedding_model_provider,
 
-                     model_type=ModelType.TEXT_EMBEDDING,
 
-                     model=dataset.embedding_model,
 
-                 )
 
-             max_position = (
 
-                 db.session.query(func.max(DocumentSegment.position))
 
-                 .filter(DocumentSegment.document_id == document.id)
 
-                 .scalar()
 
-             )
 
-             pre_segment_data_list = []
 
-             segment_data_list = []
 
-             keywords_list = []
 
-             for segment_item in segments:
 
-                 content = segment_item["content"]
 
-                 doc_id = str(uuid.uuid4())
 
-                 segment_hash = helper.generate_text_hash(content)
 
-                 tokens = 0
 
-                 if dataset.indexing_technique == "high_quality" and embedding_model:
 
-                     # calc embedding use tokens
 
-                     tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
 
-                 segment_document = DocumentSegment(
 
-                     tenant_id=current_user.current_tenant_id,
 
-                     dataset_id=document.dataset_id,
 
-                     document_id=document.id,
 
-                     index_node_id=doc_id,
 
-                     index_node_hash=segment_hash,
 
-                     position=max_position + 1 if max_position else 1,
 
-                     content=content,
 
-                     word_count=len(content),
 
-                     tokens=tokens,
 
-                     status="completed",
 
-                     indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 
-                     completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
 
-                     created_by=current_user.id,
 
-                 )
 
-                 if document.doc_form == "qa_model":
 
-                     segment_document.answer = segment_item["answer"]
 
-                 db.session.add(segment_document)
 
-                 segment_data_list.append(segment_document)
 
-                 pre_segment_data_list.append(segment_document)
 
-                 if "keywords" in segment_item:
 
-                     keywords_list.append(segment_item["keywords"])
 
-                 else:
 
-                     keywords_list.append(None)
 
-             try:
 
-                 # save vector index
 
-                 VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
 
-             except Exception as e:
 
-                 logging.exception("create segment index failed")
 
-                 for segment_document in segment_data_list:
 
-                     segment_document.enabled = False
 
-                     segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-                     segment_document.status = "error"
 
-                     segment_document.error = str(e)
 
-             db.session.commit()
 
-             return segment_data_list
 
-     @classmethod
 
-     def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
 
-         indexing_cache_key = "segment_{}_indexing".format(segment.id)
 
-         cache_result = redis_client.get(indexing_cache_key)
 
-         if cache_result is not None:
 
-             raise ValueError("Segment is indexing, please try again later")
 
-         if "enabled" in args and args["enabled"] is not None:
 
-             action = args["enabled"]
 
-             if segment.enabled != action:
 
-                 if not action:
 
-                     segment.enabled = action
 
-                     segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-                     segment.disabled_by = current_user.id
 
-                     db.session.add(segment)
 
-                     db.session.commit()
 
-                     # Set cache to prevent indexing the same segment multiple times
 
-                     redis_client.setex(indexing_cache_key, 600, 1)
 
-                     disable_segment_from_index_task.delay(segment.id)
 
-                     return segment
 
-         if not segment.enabled:
 
-             if "enabled" in args and args["enabled"] is not None:
 
-                 if not args["enabled"]:
 
-                     raise ValueError("Can't update disabled segment")
 
-             else:
 
-                 raise ValueError("Can't update disabled segment")
 
-         try:
 
-             content = args["content"]
 
-             if segment.content == content:
 
-                 if document.doc_form == "qa_model":
 
-                     segment.answer = args["answer"]
 
-                 if args.get("keywords"):
 
-                     segment.keywords = args["keywords"]
 
-                 segment.enabled = True
 
-                 segment.disabled_at = None
 
-                 segment.disabled_by = None
 
-                 db.session.add(segment)
 
-                 db.session.commit()
 
-                 # update segment index task
 
-                 if "keywords" in args:
 
-                     keyword = Keyword(dataset)
 
-                     keyword.delete_by_ids([segment.index_node_id])
 
-                     document = RAGDocument(
 
-                         page_content=segment.content,
 
-                         metadata={
 
-                             "doc_id": segment.index_node_id,
 
-                             "doc_hash": segment.index_node_hash,
 
-                             "document_id": segment.document_id,
 
-                             "dataset_id": segment.dataset_id,
 
-                         },
 
-                     )
 
-                     keyword.add_texts([document], keywords_list=[args["keywords"]])
 
-             else:
 
-                 segment_hash = helper.generate_text_hash(content)
 
-                 tokens = 0
 
-                 if dataset.indexing_technique == "high_quality":
 
-                     model_manager = ModelManager()
 
-                     embedding_model = model_manager.get_model_instance(
 
-                         tenant_id=current_user.current_tenant_id,
 
-                         provider=dataset.embedding_model_provider,
 
-                         model_type=ModelType.TEXT_EMBEDDING,
 
-                         model=dataset.embedding_model,
 
-                     )
 
-                     # calc embedding use tokens
 
-                     tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
 
-                 segment.content = content
 
-                 segment.index_node_hash = segment_hash
 
-                 segment.word_count = len(content)
 
-                 segment.tokens = tokens
 
-                 segment.status = "completed"
 
-                 segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-                 segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-                 segment.updated_by = current_user.id
 
-                 segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-                 segment.enabled = True
 
-                 segment.disabled_at = None
 
-                 segment.disabled_by = None
 
-                 if document.doc_form == "qa_model":
 
-                     segment.answer = args["answer"]
 
-                 db.session.add(segment)
 
-                 db.session.commit()
 
-                 # update segment vector index
 
-                 VectorService.update_segment_vector(args["keywords"], segment, dataset)
 
-         except Exception as e:
 
-             logging.exception("update segment index failed")
 
-             segment.enabled = False
 
-             segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
 
-             segment.status = "error"
 
-             segment.error = str(e)
 
-             db.session.commit()
 
-         segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
 
-         return segment
 
-     @classmethod
 
-     def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
 
-         indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
 
-         cache_result = redis_client.get(indexing_cache_key)
 
-         if cache_result is not None:
 
-             raise ValueError("Segment is deleting.")
 
-         # enabled segment need to delete index
 
-         if segment.enabled:
 
-             # send delete segment index task
 
-             redis_client.setex(indexing_cache_key, 600, 1)
 
-             delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
 
-         db.session.delete(segment)
 
-         db.session.commit()
 
- class DatasetCollectionBindingService:
 
-     @classmethod
 
-     def get_dataset_collection_binding(
 
-         cls, provider_name: str, model_name: str, collection_type: str = "dataset"
 
-     ) -> DatasetCollectionBinding:
 
-         dataset_collection_binding = (
 
-             db.session.query(DatasetCollectionBinding)
 
-             .filter(
 
-                 DatasetCollectionBinding.provider_name == provider_name,
 
-                 DatasetCollectionBinding.model_name == model_name,
 
-                 DatasetCollectionBinding.type == collection_type,
 
-             )
 
-             .order_by(DatasetCollectionBinding.created_at)
 
-             .first()
 
-         )
 
-         if not dataset_collection_binding:
 
-             dataset_collection_binding = DatasetCollectionBinding(
 
-                 provider_name=provider_name,
 
-                 model_name=model_name,
 
-                 collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
 
-                 type=collection_type,
 
-             )
 
-             db.session.add(dataset_collection_binding)
 
-             db.session.commit()
 
-         return dataset_collection_binding
 
-     @classmethod
 
-     def get_dataset_collection_binding_by_id_and_type(
 
-         cls, collection_binding_id: str, collection_type: str = "dataset"
 
-     ) -> DatasetCollectionBinding:
 
-         dataset_collection_binding = (
 
-             db.session.query(DatasetCollectionBinding)
 
-             .filter(
 
-                 DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
 
-             )
 
-             .order_by(DatasetCollectionBinding.created_at)
 
-             .first()
 
-         )
 
-         return dataset_collection_binding
 
- class DatasetPermissionService:
 
-     @classmethod
 
-     def get_dataset_partial_member_list(cls, dataset_id):
 
-         user_list_query = (
 
-             db.session.query(
 
-                 DatasetPermission.account_id,
 
-             )
 
-             .filter(DatasetPermission.dataset_id == dataset_id)
 
-             .all()
 
-         )
 
-         user_list = []
 
-         for user in user_list_query:
 
-             user_list.append(user.account_id)
 
-         return user_list
 
-     @classmethod
 
-     def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
 
-         try:
 
-             db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
 
-             permissions = []
 
-             for user in user_list:
 
-                 permission = DatasetPermission(
 
-                     tenant_id=tenant_id,
 
-                     dataset_id=dataset_id,
 
-                     account_id=user["user_id"],
 
-                 )
 
-                 permissions.append(permission)
 
-             db.session.add_all(permissions)
 
-             db.session.commit()
 
-         except Exception as e:
 
-             db.session.rollback()
 
-             raise e
 
-     @classmethod
 
-     def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
 
-         if not user.is_dataset_editor:
 
-             raise NoPermissionError("User does not have permission to edit this dataset.")
 
-         if user.is_dataset_operator and dataset.permission != requested_permission:
 
-             raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
 
-         if user.is_dataset_operator and requested_permission == "partial_members":
 
-             if not requested_partial_member_list:
 
-                 raise ValueError("Partial member list is required when setting to partial members.")
 
-             local_member_list = cls.get_dataset_partial_member_list(dataset.id)
 
-             request_member_list = [user["user_id"] for user in requested_partial_member_list]
 
-             if set(local_member_list) != set(request_member_list):
 
-                 raise ValueError("Dataset operators cannot change the dataset permissions.")
 
-     @classmethod
 
-     def clear_partial_member_list(cls, dataset_id):
 
-         try:
 
-             db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
 
-             db.session.commit()
 
-         except Exception as e:
 
-             db.session.rollback()
 
-             raise e
 
 
  |