123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- import json
- from typing import Type
- from flask import current_app
- from langchain.tools import BaseTool
- from pydantic import Field, BaseModel
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.conversation_message_task import ConversationMessageTask
- from core.embedding.cached_embedding import CacheEmbedding
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
- from core.index.vector_index.vector_index import VectorIndex
- from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
- from core.model_providers.model_factory import ModelFactory
- from extensions.ext_database import db
- from models.dataset import Dataset, DocumentSegment, Document
- class DatasetRetrieverToolInput(BaseModel):
- query: str = Field(..., description="Query for the dataset to be used to retrieve the dataset.")
- class DatasetRetrieverTool(BaseTool):
- """Tool for querying a Dataset."""
- name: str = "dataset"
- args_schema: Type[BaseModel] = DatasetRetrieverToolInput
- description: str = "use this to retrieve a dataset. "
- tenant_id: str
- dataset_id: str
- k: int = 3
- conversation_message_task: ConversationMessageTask
- return_resource: str
- retriever_from: str
- @classmethod
- def from_dataset(cls, dataset: Dataset, **kwargs):
- description = dataset.description
- if not description:
- description = 'useful for when you want to answer queries about the ' + dataset.name
- description = description.replace('\n', '').replace('\r', '')
- return cls(
- name=f'dataset-{dataset.id}',
- tenant_id=dataset.tenant_id,
- dataset_id=dataset.id,
- description=description,
- **kwargs
- )
- def _run(self, query: str) -> str:
- dataset = db.session.query(Dataset).filter(
- Dataset.tenant_id == self.tenant_id,
- Dataset.id == self.dataset_id
- ).first()
- if not dataset:
- return f'[{self.name} failed to find dataset with id {self.dataset_id}.]'
- if dataset.indexing_technique == "economy":
- # use keyword table query
- kw_table_index = KeywordTableIndex(
- dataset=dataset,
- config=KeywordTableConfig(
- max_keywords_per_chunk=5
- )
- )
- documents = kw_table_index.search(query, search_kwargs={'k': self.k})
- return str("\n".join([document.page_content for document in documents]))
- else:
- try:
- embedding_model = ModelFactory.get_embedding_model(
- tenant_id=dataset.tenant_id,
- model_provider_name=dataset.embedding_model_provider,
- model_name=dataset.embedding_model
- )
- except LLMBadRequestError:
- return ''
- except ProviderTokenNotInitError:
- return ''
- embeddings = CacheEmbedding(embedding_model)
- vector_index = VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- if self.k > 0:
- documents = vector_index.search(
- query,
- search_type='similarity_score_threshold',
- search_kwargs={
- 'k': self.k,
- 'filter': {
- 'group_id': [dataset.id]
- }
- }
- )
- else:
- documents = []
- hit_callback = DatasetIndexToolCallbackHandler(dataset.id, self.conversation_message_task)
- hit_callback.on_tool_end(documents)
- document_score_list = {}
- if dataset.indexing_technique != "economy":
- for item in documents:
- document_score_list[item.metadata['doc_id']] = item.metadata['score']
- document_context_list = []
- index_node_ids = [document.metadata['doc_id'] for document in documents]
- segments = DocumentSegment.query.filter(DocumentSegment.dataset_id == self.dataset_id,
- DocumentSegment.completed_at.isnot(None),
- DocumentSegment.status == 'completed',
- DocumentSegment.enabled == True,
- DocumentSegment.index_node_id.in_(index_node_ids)
- ).all()
- if segments:
- index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
- sorted_segments = sorted(segments,
- key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
- float('inf')))
- for segment in sorted_segments:
- if segment.answer:
- document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
- else:
- document_context_list.append(segment.content)
- if self.return_resource:
- context_list = []
- resource_number = 1
- for segment in sorted_segments:
- context = {}
- document = Document.query.filter(Document.id == segment.document_id,
- Document.enabled == True,
- Document.archived == False,
- ).first()
- if dataset and document:
- source = {
- 'position': resource_number,
- 'dataset_id': dataset.id,
- 'dataset_name': dataset.name,
- 'document_id': document.id,
- 'document_name': document.name,
- 'data_source_type': document.data_source_type,
- 'segment_id': segment.id,
- 'retriever_from': self.retriever_from
- }
- if dataset.indexing_technique != "economy":
- source['score'] = document_score_list.get(segment.index_node_id)
- if self.retriever_from == 'dev':
- source['hit_count'] = segment.hit_count
- source['word_count'] = segment.word_count
- source['segment_position'] = segment.position
- source['index_node_hash'] = segment.index_node_hash
- if segment.answer:
- source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
- else:
- source['content'] = segment.content
- context_list.append(source)
- resource_number += 1
- hit_callback.return_retriever_resource_info(context_list)
- return str("\n".join(document_context_list))
- async def _arun(self, tool_input: str) -> str:
- raise NotImplementedError()
|