index.py 2.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. import json
  2. from flask import current_app
  3. from langchain.embeddings import OpenAIEmbeddings
  4. from core.embedding.cached_embedding import CacheEmbedding
  5. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  6. from core.index.vector_index.vector_index import VectorIndex
  7. from core.model_providers.model_factory import ModelFactory
  8. from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
  9. from core.model_providers.models.entity.model_params import ModelKwargs
  10. from core.model_providers.models.llm.openai_model import OpenAIModel
  11. from core.model_providers.providers.openai_provider import OpenAIProvider
  12. from models.dataset import Dataset
  13. from models.provider import Provider, ProviderType
  14. class IndexBuilder:
  15. @classmethod
  16. def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
  17. if indexing_technique == "high_quality":
  18. if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
  19. return None
  20. embedding_model = ModelFactory.get_embedding_model(
  21. tenant_id=dataset.tenant_id,
  22. model_provider_name=dataset.embedding_model_provider,
  23. model_name=dataset.embedding_model
  24. )
  25. embeddings = CacheEmbedding(embedding_model)
  26. return VectorIndex(
  27. dataset=dataset,
  28. config=current_app.config,
  29. embeddings=embeddings
  30. )
  31. elif indexing_technique == "economy":
  32. return KeywordTableIndex(
  33. dataset=dataset,
  34. config=KeywordTableConfig(
  35. max_keywords_per_chunk=10
  36. )
  37. )
  38. else:
  39. raise ValueError('Unknown indexing technique')
  40. @classmethod
  41. def get_default_high_quality_index(cls, dataset: Dataset):
  42. embeddings = OpenAIEmbeddings(openai_api_key=' ')
  43. return VectorIndex(
  44. dataset=dataset,
  45. config=current_app.config,
  46. embeddings=embeddings
  47. )