1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- import json
- from flask import current_app
- from langchain.embeddings import OpenAIEmbeddings
- from core.embedding.cached_embedding import CacheEmbedding
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
- from core.index.vector_index.vector_index import VectorIndex
- from core.model_providers.model_factory import ModelFactory
- from core.model_providers.models.embedding.openai_embedding import OpenAIEmbedding
- from core.model_providers.models.entity.model_params import ModelKwargs
- from core.model_providers.models.llm.openai_model import OpenAIModel
- from core.model_providers.providers.openai_provider import OpenAIProvider
- from models.dataset import Dataset
- from models.provider import Provider, ProviderType
- class IndexBuilder:
- @classmethod
- def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
- if indexing_technique == "high_quality":
- if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
- return None
- embedding_model = ModelFactory.get_embedding_model(
- tenant_id=dataset.tenant_id,
- model_provider_name=dataset.embedding_model_provider,
- model_name=dataset.embedding_model
- )
- embeddings = CacheEmbedding(embedding_model)
- return VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- elif indexing_technique == "economy":
- return KeywordTableIndex(
- dataset=dataset,
- config=KeywordTableConfig(
- max_keywords_per_chunk=10
- )
- )
- else:
- raise ValueError('Unknown indexing technique')
- @classmethod
- def get_default_high_quality_index(cls, dataset: Dataset):
- embeddings = OpenAIEmbeddings(openai_api_key=' ')
- return VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
|