hit_testing_service.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107
  1. import logging
  2. import time
  3. from core.rag.datasource.retrieval_service import RetrievalService
  4. from core.rag.models.document import Document
  5. from core.rag.retrieval.retrival_methods import RetrievalMethod
  6. from extensions.ext_database import db
  7. from models.account import Account
  8. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  9. default_retrieval_model = {
  10. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  11. 'reranking_enable': False,
  12. 'reranking_model': {
  13. 'reranking_provider_name': '',
  14. 'reranking_model_name': ''
  15. },
  16. 'top_k': 2,
  17. 'score_threshold_enabled': False
  18. }
  19. class HitTestingService:
  20. @classmethod
  21. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  22. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  23. return {
  24. "query": {
  25. "content": query,
  26. "tsne_position": {'x': 0, 'y': 0},
  27. },
  28. "records": []
  29. }
  30. start = time.perf_counter()
  31. # get retrieval model , if the model is not setting , using default
  32. if not retrieval_model:
  33. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  34. all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
  35. dataset_id=dataset.id,
  36. query=query,
  37. top_k=retrieval_model['top_k'],
  38. score_threshold=retrieval_model['score_threshold']
  39. if retrieval_model['score_threshold_enabled'] else None,
  40. reranking_model=retrieval_model['reranking_model']
  41. if retrieval_model['reranking_enable'] else None
  42. )
  43. end = time.perf_counter()
  44. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  45. dataset_query = DatasetQuery(
  46. dataset_id=dataset.id,
  47. content=query,
  48. source='hit_testing',
  49. created_by_role='account',
  50. created_by=account.id
  51. )
  52. db.session.add(dataset_query)
  53. db.session.commit()
  54. return cls.compact_retrieve_response(dataset, query, all_documents)
  55. @classmethod
  56. def compact_retrieve_response(cls, dataset: Dataset, query: str, documents: list[Document]):
  57. i = 0
  58. records = []
  59. for document in documents:
  60. index_node_id = document.metadata['doc_id']
  61. segment = db.session.query(DocumentSegment).filter(
  62. DocumentSegment.dataset_id == dataset.id,
  63. DocumentSegment.enabled == True,
  64. DocumentSegment.status == 'completed',
  65. DocumentSegment.index_node_id == index_node_id
  66. ).first()
  67. if not segment:
  68. i += 1
  69. continue
  70. record = {
  71. "segment": segment,
  72. "score": document.metadata.get('score', None),
  73. }
  74. records.append(record)
  75. i += 1
  76. return {
  77. "query": {
  78. "content": query,
  79. },
  80. "records": records
  81. }
  82. @classmethod
  83. def hit_testing_args_check(cls, args):
  84. query = args['query']
  85. if not query or len(query) > 250:
  86. raise ValueError('Query is required and cannot exceed 250 characters')