weight_rerank.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186
  1. import math
  2. from collections import Counter
  3. from typing import Optional
  4. import numpy as np
  5. from core.model_manager import ModelManager
  6. from core.model_runtime.entities.model_entities import ModelType
  7. from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaKeywordTableHandler
  8. from core.rag.embedding.cached_embedding import CacheEmbedding
  9. from core.rag.models.document import Document
  10. from core.rag.rerank.entity.weight import VectorSetting, Weights
  11. from core.rag.rerank.rerank_base import BaseRerankRunner
  12. class WeightRerankRunner(BaseRerankRunner):
  13. def __init__(self, tenant_id: str, weights: Weights) -> None:
  14. self.tenant_id = tenant_id
  15. self.weights = weights
  16. def run(
  17. self,
  18. query: str,
  19. documents: list[Document],
  20. score_threshold: Optional[float] = None,
  21. top_n: Optional[int] = None,
  22. user: Optional[str] = None,
  23. ) -> list[Document]:
  24. """
  25. Run rerank model
  26. :param query: search query
  27. :param documents: documents for reranking
  28. :param score_threshold: score threshold
  29. :param top_n: top n
  30. :param user: unique user id if needed
  31. :return:
  32. """
  33. docs = []
  34. doc_id = []
  35. unique_documents = []
  36. for document in documents:
  37. if document.metadata["doc_id"] not in doc_id:
  38. doc_id.append(document.metadata["doc_id"])
  39. docs.append(document.page_content)
  40. unique_documents.append(document)
  41. documents = unique_documents
  42. rerank_documents = []
  43. query_scores = self._calculate_keyword_score(query, documents)
  44. query_vector_scores = self._calculate_cosine(self.tenant_id, query, documents, self.weights.vector_setting)
  45. for document, query_score, query_vector_score in zip(documents, query_scores, query_vector_scores):
  46. # format document
  47. score = (
  48. self.weights.vector_setting.vector_weight * query_vector_score
  49. + self.weights.keyword_setting.keyword_weight * query_score
  50. )
  51. if score_threshold and score < score_threshold:
  52. continue
  53. document.metadata["score"] = score
  54. rerank_documents.append(document)
  55. rerank_documents = sorted(rerank_documents, key=lambda x: x.metadata["score"], reverse=True)
  56. return rerank_documents[:top_n] if top_n else rerank_documents
  57. def _calculate_keyword_score(self, query: str, documents: list[Document]) -> list[float]:
  58. """
  59. Calculate BM25 scores
  60. :param query: search query
  61. :param documents: documents for reranking
  62. :return:
  63. """
  64. keyword_table_handler = JiebaKeywordTableHandler()
  65. query_keywords = keyword_table_handler.extract_keywords(query, None)
  66. documents_keywords = []
  67. for document in documents:
  68. # get the document keywords
  69. document_keywords = keyword_table_handler.extract_keywords(document.page_content, None)
  70. document.metadata["keywords"] = document_keywords
  71. documents_keywords.append(document_keywords)
  72. # Counter query keywords(TF)
  73. query_keyword_counts = Counter(query_keywords)
  74. # total documents
  75. total_documents = len(documents)
  76. # calculate all documents' keywords IDF
  77. all_keywords = set()
  78. for document_keywords in documents_keywords:
  79. all_keywords.update(document_keywords)
  80. keyword_idf = {}
  81. for keyword in all_keywords:
  82. # calculate include query keywords' documents
  83. doc_count_containing_keyword = sum(1 for doc_keywords in documents_keywords if keyword in doc_keywords)
  84. # IDF
  85. keyword_idf[keyword] = math.log((1 + total_documents) / (1 + doc_count_containing_keyword)) + 1
  86. query_tfidf = {}
  87. for keyword, count in query_keyword_counts.items():
  88. tf = count
  89. idf = keyword_idf.get(keyword, 0)
  90. query_tfidf[keyword] = tf * idf
  91. # calculate all documents' TF-IDF
  92. documents_tfidf = []
  93. for document_keywords in documents_keywords:
  94. document_keyword_counts = Counter(document_keywords)
  95. document_tfidf = {}
  96. for keyword, count in document_keyword_counts.items():
  97. tf = count
  98. idf = keyword_idf.get(keyword, 0)
  99. document_tfidf[keyword] = tf * idf
  100. documents_tfidf.append(document_tfidf)
  101. def cosine_similarity(vec1, vec2):
  102. intersection = set(vec1.keys()) & set(vec2.keys())
  103. numerator = sum(vec1[x] * vec2[x] for x in intersection)
  104. sum1 = sum(vec1[x] ** 2 for x in vec1)
  105. sum2 = sum(vec2[x] ** 2 for x in vec2)
  106. denominator = math.sqrt(sum1) * math.sqrt(sum2)
  107. if not denominator:
  108. return 0.0
  109. else:
  110. return float(numerator) / denominator
  111. similarities = []
  112. for document_tfidf in documents_tfidf:
  113. similarity = cosine_similarity(query_tfidf, document_tfidf)
  114. similarities.append(similarity)
  115. # for idx, similarity in enumerate(similarities):
  116. # print(f"Document {idx + 1} similarity: {similarity}")
  117. return similarities
  118. def _calculate_cosine(
  119. self, tenant_id: str, query: str, documents: list[Document], vector_setting: VectorSetting
  120. ) -> list[float]:
  121. """
  122. Calculate Cosine scores
  123. :param query: search query
  124. :param documents: documents for reranking
  125. :return:
  126. """
  127. query_vector_scores = []
  128. model_manager = ModelManager()
  129. embedding_model = model_manager.get_model_instance(
  130. tenant_id=tenant_id,
  131. provider=vector_setting.embedding_provider_name,
  132. model_type=ModelType.TEXT_EMBEDDING,
  133. model=vector_setting.embedding_model_name,
  134. )
  135. cache_embedding = CacheEmbedding(embedding_model)
  136. query_vector = cache_embedding.embed_query(query)
  137. for document in documents:
  138. # calculate cosine similarity
  139. if "score" in document.metadata:
  140. query_vector_scores.append(document.metadata["score"])
  141. else:
  142. # transform to NumPy
  143. vec1 = np.array(query_vector)
  144. vec2 = np.array(document.vector)
  145. # calculate dot product
  146. dot_product = np.dot(vec1, vec2)
  147. # calculate norm
  148. norm_vec1 = np.linalg.norm(vec1)
  149. norm_vec2 = np.linalg.norm(vec2)
  150. # calculate cosine similarity
  151. cosine_sim = dot_product / (norm_vec1 * norm_vec2)
  152. query_vector_scores.append(cosine_sim)
  153. return query_vector_scores