| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 | 
							- """Functionality for splitting text."""
 
- from __future__ import annotations
 
- from typing import Any, Optional, cast
 
- from core.model_manager import ModelInstance
 
- from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
 
- from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
 
- from core.splitter.text_splitter import (
 
-     TS,
 
-     Collection,
 
-     Literal,
 
-     RecursiveCharacterTextSplitter,
 
-     Set,
 
-     TokenTextSplitter,
 
-     Union,
 
- )
 
- class EnhanceRecursiveCharacterTextSplitter(RecursiveCharacterTextSplitter):
 
-     """
 
-         This class is used to implement from_gpt2_encoder, to prevent using of tiktoken
 
-     """
 
-     @classmethod
 
-     def from_encoder(
 
-             cls: type[TS],
 
-             embedding_model_instance: Optional[ModelInstance],
 
-             allowed_special: Union[Literal[all], Set[str]] = set(),
 
-             disallowed_special: Union[Literal[all], Collection[str]] = "all",
 
-             **kwargs: Any,
 
-     ):
 
-         def _token_encoder(text: str) -> int:
 
-             if not text:
 
-                 return 0
 
-             if embedding_model_instance:
 
-                 embedding_model_type_instance = embedding_model_instance.model_type_instance
 
-                 embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
 
-                 return embedding_model_type_instance.get_num_tokens(
 
-                     model=embedding_model_instance.model,
 
-                     credentials=embedding_model_instance.credentials,
 
-                     texts=[text]
 
-                 )
 
-             else:
 
-                 return GPT2Tokenizer.get_num_tokens(text)
 
-         if issubclass(cls, TokenTextSplitter):
 
-             extra_kwargs = {
 
-                 "model_name": embedding_model_instance.model if embedding_model_instance else 'gpt2',
 
-                 "allowed_special": allowed_special,
 
-                 "disallowed_special": disallowed_special,
 
-             }
 
-             kwargs = {**kwargs, **extra_kwargs}
 
-         return cls(length_function=_token_encoder, **kwargs)
 
- class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter):
 
-     def __init__(self, fixed_separator: str = "\n\n", separators: Optional[list[str]] = None, **kwargs: Any):
 
-         """Create a new TextSplitter."""
 
-         super().__init__(**kwargs)
 
-         self._fixed_separator = fixed_separator
 
-         self._separators = separators or ["\n\n", "\n", " ", ""]
 
-     def split_text(self, text: str) -> list[str]:
 
-         """Split incoming text and return chunks."""
 
-         if self._fixed_separator:
 
-             chunks = text.split(self._fixed_separator)
 
-         else:
 
-             chunks = list(text)
 
-         final_chunks = []
 
-         for chunk in chunks:
 
-             if self._length_function(chunk) > self._chunk_size:
 
-                 final_chunks.extend(self.recursive_split_text(chunk))
 
-             else:
 
-                 final_chunks.append(chunk)
 
-         return final_chunks
 
-     def recursive_split_text(self, text: str) -> list[str]:
 
-         """Split incoming text and return chunks."""
 
-         final_chunks = []
 
-         # Get appropriate separator to use
 
-         separator = self._separators[-1]
 
-         for _s in self._separators:
 
-             if _s == "":
 
-                 separator = _s
 
-                 break
 
-             if _s in text:
 
-                 separator = _s
 
-                 break
 
-         # Now that we have the separator, split the text
 
-         if separator:
 
-             splits = text.split(separator)
 
-         else:
 
-             splits = list(text)
 
-         # Now go merging things, recursively splitting longer texts.
 
-         _good_splits = []
 
-         for s in splits:
 
-             if self._length_function(s) < self._chunk_size:
 
-                 _good_splits.append(s)
 
-             else:
 
-                 if _good_splits:
 
-                     merged_text = self._merge_splits(_good_splits, separator)
 
-                     final_chunks.extend(merged_text)
 
-                     _good_splits = []
 
-                 other_info = self.recursive_split_text(s)
 
-                 final_chunks.extend(other_info)
 
-         if _good_splits:
 
-             merged_text = self._merge_splits(_good_splits, separator)
 
-             final_chunks.extend(merged_text)
 
-         return final_chunks
 
 
  |