| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 | import loggingimport timeimport numpy as npfrom sklearn.manifold import TSNEfrom core.embedding.cached_embedding import CacheEmbeddingfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.rag.datasource.entity.embedding import Embeddingsfrom core.rag.datasource.retrieval_service import RetrievalServicefrom core.rag.models.document import Documentfrom extensions.ext_database import dbfrom models.account import Accountfrom models.dataset import Dataset, DatasetQuery, DocumentSegmentdefault_retrieval_model = {    'search_method': 'semantic_search',    'reranking_enable': False,    'reranking_model': {        'reranking_provider_name': '',        'reranking_model_name': ''    },    'top_k': 2,    'score_threshold_enabled': False}class HitTestingService:    @classmethod    def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:        if dataset.available_document_count == 0 or dataset.available_segment_count == 0:            return {                "query": {                    "content": query,                    "tsne_position": {'x': 0, 'y': 0},                },                "records": []            }        start = time.perf_counter()        # get retrieval model , if the model is not setting , using default        if not retrieval_model:            retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model        # get embedding model        model_manager = ModelManager()        embedding_model = model_manager.get_model_instance(            tenant_id=dataset.tenant_id,            model_type=ModelType.TEXT_EMBEDDING,            provider=dataset.embedding_model_provider,            model=dataset.embedding_model        )        embeddings = CacheEmbedding(embedding_model)        all_documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],                                                  dataset_id=dataset.id,                                                  query=query,                                                  top_k=retrieval_model['top_k'],                                                  score_threshold=retrieval_model['score_threshold']                                                  if retrieval_model['score_threshold_enabled'] else None,                                                  reranking_model=retrieval_model['reranking_model']                                                  if retrieval_model['reranking_enable'] else None                                                  )        end = time.perf_counter()        logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")        dataset_query = DatasetQuery(            dataset_id=dataset.id,            content=query,            source='hit_testing',            created_by_role='account',            created_by=account.id        )        db.session.add(dataset_query)        db.session.commit()        return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)    @classmethod    def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: list[Document]):        text_embeddings = [            embeddings.embed_query(query)        ]        text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))        tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)        query_position = tsne_position_data.pop(0)        i = 0        records = []        for document in documents:            index_node_id = document.metadata['doc_id']            segment = db.session.query(DocumentSegment).filter(                DocumentSegment.dataset_id == dataset.id,                DocumentSegment.enabled == True,                DocumentSegment.status == 'completed',                DocumentSegment.index_node_id == index_node_id            ).first()            if not segment:                i += 1                continue            record = {                "segment": segment,                "score": document.metadata.get('score', None),                "tsne_position": tsne_position_data[i]            }            records.append(record)            i += 1        return {            "query": {                "content": query,                "tsne_position": query_position,            },            "records": records        }    @classmethod    def get_tsne_positions_from_embeddings(cls, embeddings: list):        embedding_length = len(embeddings)        if embedding_length <= 1:            return [{'x': 0, 'y': 0}]        noise = np.random.normal(0, 1e-4, np.array(embeddings).shape)        concatenate_data = np.array(embeddings) + noise        concatenate_data = concatenate_data.reshape(embedding_length, -1)        perplexity = embedding_length / 2 + 1        if perplexity >= embedding_length:            perplexity = max(embedding_length - 1, 1)        tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)        data_tsne = tsne.fit_transform(concatenate_data)        tsne_position_data = []        for i in range(len(data_tsne)):            tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})        return tsne_position_data    @classmethod    def hit_testing_args_check(cls, args):        query = args['query']        if not query or len(query) > 250:            raise ValueError('Query is required and cannot exceed 250 characters')
 |