| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 | 
							- from __future__ import annotations
 
- import copy
 
- import logging
 
- import re
 
- from abc import ABC, abstractmethod
 
- from collections.abc import Callable, Collection, Iterable, Sequence, Set
 
- from dataclasses import dataclass
 
- from typing import (
 
-     Any,
 
-     Literal,
 
-     Optional,
 
-     TypedDict,
 
-     TypeVar,
 
-     Union,
 
- )
 
- from core.rag.models.document import BaseDocumentTransformer, Document
 
- logger = logging.getLogger(__name__)
 
- TS = TypeVar("TS", bound="TextSplitter")
 
- def _split_text_with_regex(
 
-         text: str, separator: str, keep_separator: bool
 
- ) -> list[str]:
 
-     # Now that we have the separator, split the text
 
-     if separator:
 
-         if keep_separator:
 
-             # The parentheses in the pattern keep the delimiters in the result.
 
-             _splits = re.split(f"({re.escape(separator)})", text)
 
-             splits = [_splits[i] + _splits[i + 1] for i in range(1, len(_splits), 2)]
 
-             if len(_splits) % 2 == 0:
 
-                 splits += _splits[-1:]
 
-             splits = [_splits[0]] + splits
 
-         else:
 
-             splits = re.split(separator, text)
 
-     else:
 
-         splits = list(text)
 
-     return [s for s in splits if s != ""]
 
- class TextSplitter(BaseDocumentTransformer, ABC):
 
-     """Interface for splitting text into chunks."""
 
-     def __init__(
 
-             self,
 
-             chunk_size: int = 4000,
 
-             chunk_overlap: int = 200,
 
-             length_function: Callable[[str], int] = len,
 
-             keep_separator: bool = False,
 
-             add_start_index: bool = False,
 
-     ) -> None:
 
-         """Create a new TextSplitter.
 
-         Args:
 
-             chunk_size: Maximum size of chunks to return
 
-             chunk_overlap: Overlap in characters between chunks
 
-             length_function: Function that measures the length of given chunks
 
-             keep_separator: Whether to keep the separator in the chunks
 
-             add_start_index: If `True`, includes chunk's start index in metadata
 
-         """
 
-         if chunk_overlap > chunk_size:
 
-             raise ValueError(
 
-                 f"Got a larger chunk overlap ({chunk_overlap}) than chunk size "
 
-                 f"({chunk_size}), should be smaller."
 
-             )
 
-         self._chunk_size = chunk_size
 
-         self._chunk_overlap = chunk_overlap
 
-         self._length_function = length_function
 
-         self._keep_separator = keep_separator
 
-         self._add_start_index = add_start_index
 
-     @abstractmethod
 
-     def split_text(self, text: str) -> list[str]:
 
-         """Split text into multiple components."""
 
-     def create_documents(
 
-             self, texts: list[str], metadatas: Optional[list[dict]] = None
 
-     ) -> list[Document]:
 
-         """Create documents from a list of texts."""
 
-         _metadatas = metadatas or [{}] * len(texts)
 
-         documents = []
 
-         for i, text in enumerate(texts):
 
-             index = -1
 
-             for chunk in self.split_text(text):
 
-                 metadata = copy.deepcopy(_metadatas[i])
 
-                 if self._add_start_index:
 
-                     index = text.find(chunk, index + 1)
 
-                     metadata["start_index"] = index
 
-                 new_doc = Document(page_content=chunk, metadata=metadata)
 
-                 documents.append(new_doc)
 
-         return documents
 
-     def split_documents(self, documents: Iterable[Document]) -> list[Document]:
 
-         """Split documents."""
 
-         texts, metadatas = [], []
 
-         for doc in documents:
 
-             texts.append(doc.page_content)
 
-             metadatas.append(doc.metadata)
 
-         return self.create_documents(texts, metadatas=metadatas)
 
-     def _join_docs(self, docs: list[str], separator: str) -> Optional[str]:
 
-         text = separator.join(docs)
 
-         text = text.strip()
 
-         if text == "":
 
-             return None
 
-         else:
 
-             return text
 
-     def _merge_splits(self, splits: Iterable[str], separator: str) -> list[str]:
 
-         # We now want to combine these smaller pieces into medium size
 
-         # chunks to send to the LLM.
 
-         separator_len = self._length_function(separator)
 
-         docs = []
 
-         current_doc: list[str] = []
 
-         total = 0
 
-         for d in splits:
 
-             _len = self._length_function(d)
 
-             if (
 
-                     total + _len + (separator_len if len(current_doc) > 0 else 0)
 
-                     > self._chunk_size
 
-             ):
 
-                 if total > self._chunk_size:
 
-                     logger.warning(
 
-                         f"Created a chunk of size {total}, "
 
-                         f"which is longer than the specified {self._chunk_size}"
 
-                     )
 
-                 if len(current_doc) > 0:
 
-                     doc = self._join_docs(current_doc, separator)
 
-                     if doc is not None:
 
-                         docs.append(doc)
 
-                     # Keep on popping if:
 
-                     # - we have a larger chunk than in the chunk overlap
 
-                     # - or if we still have any chunks and the length is long
 
-                     while total > self._chunk_overlap or (
 
-                             total + _len + (separator_len if len(current_doc) > 0 else 0)
 
-                             > self._chunk_size
 
-                             and total > 0
 
-                     ):
 
-                         total -= self._length_function(current_doc[0]) + (
 
-                             separator_len if len(current_doc) > 1 else 0
 
-                         )
 
-                         current_doc = current_doc[1:]
 
-             current_doc.append(d)
 
-             total += _len + (separator_len if len(current_doc) > 1 else 0)
 
-         doc = self._join_docs(current_doc, separator)
 
-         if doc is not None:
 
-             docs.append(doc)
 
-         return docs
 
-     @classmethod
 
-     def from_huggingface_tokenizer(cls, tokenizer: Any, **kwargs: Any) -> TextSplitter:
 
-         """Text splitter that uses HuggingFace tokenizer to count length."""
 
-         try:
 
-             from transformers import PreTrainedTokenizerBase
 
-             if not isinstance(tokenizer, PreTrainedTokenizerBase):
 
-                 raise ValueError(
 
-                     "Tokenizer received was not an instance of PreTrainedTokenizerBase"
 
-                 )
 
-             def _huggingface_tokenizer_length(text: str) -> int:
 
-                 return len(tokenizer.encode(text))
 
-         except ImportError:
 
-             raise ValueError(
 
-                 "Could not import transformers python package. "
 
-                 "Please install it with `pip install transformers`."
 
-             )
 
-         return cls(length_function=_huggingface_tokenizer_length, **kwargs)
 
-     @classmethod
 
-     def from_tiktoken_encoder(
 
-             cls: type[TS],
 
-             encoding_name: str = "gpt2",
 
-             model_name: Optional[str] = None,
 
-             allowed_special: Union[Literal["all"], Set[str]] = set(),
 
-             disallowed_special: Union[Literal["all"], Collection[str]] = "all",
 
-             **kwargs: Any,
 
-     ) -> TS:
 
-         """Text splitter that uses tiktoken encoder to count length."""
 
-         try:
 
-             import tiktoken
 
-         except ImportError:
 
-             raise ImportError(
 
-                 "Could not import tiktoken python package. "
 
-                 "This is needed in order to calculate max_tokens_for_prompt. "
 
-                 "Please install it with `pip install tiktoken`."
 
-             )
 
-         if model_name is not None:
 
-             enc = tiktoken.encoding_for_model(model_name)
 
-         else:
 
-             enc = tiktoken.get_encoding(encoding_name)
 
-         def _tiktoken_encoder(text: str) -> int:
 
-             return len(
 
-                 enc.encode(
 
-                     text,
 
-                     allowed_special=allowed_special,
 
-                     disallowed_special=disallowed_special,
 
-                 )
 
-             )
 
-         if issubclass(cls, TokenTextSplitter):
 
-             extra_kwargs = {
 
-                 "encoding_name": encoding_name,
 
-                 "model_name": model_name,
 
-                 "allowed_special": allowed_special,
 
-                 "disallowed_special": disallowed_special,
 
-             }
 
-             kwargs = {**kwargs, **extra_kwargs}
 
-         return cls(length_function=_tiktoken_encoder, **kwargs)
 
-     def transform_documents(
 
-             self, documents: Sequence[Document], **kwargs: Any
 
-     ) -> Sequence[Document]:
 
-         """Transform sequence of documents by splitting them."""
 
-         return self.split_documents(list(documents))
 
-     async def atransform_documents(
 
-             self, documents: Sequence[Document], **kwargs: Any
 
-     ) -> Sequence[Document]:
 
-         """Asynchronously transform a sequence of documents by splitting them."""
 
-         raise NotImplementedError
 
- class CharacterTextSplitter(TextSplitter):
 
-     """Splitting text that looks at characters."""
 
-     def __init__(self, separator: str = "\n\n", **kwargs: Any) -> None:
 
-         """Create a new TextSplitter."""
 
-         super().__init__(**kwargs)
 
-         self._separator = separator
 
-     def split_text(self, text: str) -> list[str]:
 
-         """Split incoming text and return chunks."""
 
-         # First we naively split the large input into a bunch of smaller ones.
 
-         splits = _split_text_with_regex(text, self._separator, self._keep_separator)
 
-         _separator = "" if self._keep_separator else self._separator
 
-         return self._merge_splits(splits, _separator)
 
- class LineType(TypedDict):
 
-     """Line type as typed dict."""
 
-     metadata: dict[str, str]
 
-     content: str
 
- class HeaderType(TypedDict):
 
-     """Header type as typed dict."""
 
-     level: int
 
-     name: str
 
-     data: str
 
- class MarkdownHeaderTextSplitter:
 
-     """Splitting markdown files based on specified headers."""
 
-     def __init__(
 
-             self, headers_to_split_on: list[tuple[str, str]], return_each_line: bool = False
 
-     ):
 
-         """Create a new MarkdownHeaderTextSplitter.
 
-         Args:
 
-             headers_to_split_on: Headers we want to track
 
-             return_each_line: Return each line w/ associated headers
 
-         """
 
-         # Output line-by-line or aggregated into chunks w/ common headers
 
-         self.return_each_line = return_each_line
 
-         # Given the headers we want to split on,
 
-         # (e.g., "#, ##, etc") order by length
 
-         self.headers_to_split_on = sorted(
 
-             headers_to_split_on, key=lambda split: len(split[0]), reverse=True
 
-         )
 
-     def aggregate_lines_to_chunks(self, lines: list[LineType]) -> list[Document]:
 
-         """Combine lines with common metadata into chunks
 
-         Args:
 
-             lines: Line of text / associated header metadata
 
-         """
 
-         aggregated_chunks: list[LineType] = []
 
-         for line in lines:
 
-             if (
 
-                     aggregated_chunks
 
-                     and aggregated_chunks[-1]["metadata"] == line["metadata"]
 
-             ):
 
-                 # If the last line in the aggregated list
 
-                 # has the same metadata as the current line,
 
-                 # append the current content to the last lines's content
 
-                 aggregated_chunks[-1]["content"] += "  \n" + line["content"]
 
-             else:
 
-                 # Otherwise, append the current line to the aggregated list
 
-                 aggregated_chunks.append(line)
 
-         return [
 
-             Document(page_content=chunk["content"], metadata=chunk["metadata"])
 
-             for chunk in aggregated_chunks
 
-         ]
 
-     def split_text(self, text: str) -> list[Document]:
 
-         """Split markdown file
 
-         Args:
 
-             text: Markdown file"""
 
-         # Split the input text by newline character ("\n").
 
-         lines = text.split("\n")
 
-         # Final output
 
-         lines_with_metadata: list[LineType] = []
 
-         # Content and metadata of the chunk currently being processed
 
-         current_content: list[str] = []
 
-         current_metadata: dict[str, str] = {}
 
-         # Keep track of the nested header structure
 
-         # header_stack: List[Dict[str, Union[int, str]]] = []
 
-         header_stack: list[HeaderType] = []
 
-         initial_metadata: dict[str, str] = {}
 
-         for line in lines:
 
-             stripped_line = line.strip()
 
-             # Check each line against each of the header types (e.g., #, ##)
 
-             for sep, name in self.headers_to_split_on:
 
-                 # Check if line starts with a header that we intend to split on
 
-                 if stripped_line.startswith(sep) and (
 
-                         # Header with no text OR header is followed by space
 
-                         # Both are valid conditions that sep is being used a header
 
-                         len(stripped_line) == len(sep)
 
-                         or stripped_line[len(sep)] == " "
 
-                 ):
 
-                     # Ensure we are tracking the header as metadata
 
-                     if name is not None:
 
-                         # Get the current header level
 
-                         current_header_level = sep.count("#")
 
-                         # Pop out headers of lower or same level from the stack
 
-                         while (
 
-                                 header_stack
 
-                                 and header_stack[-1]["level"] >= current_header_level
 
-                         ):
 
-                             # We have encountered a new header
 
-                             # at the same or higher level
 
-                             popped_header = header_stack.pop()
 
-                             # Clear the metadata for the
 
-                             # popped header in initial_metadata
 
-                             if popped_header["name"] in initial_metadata:
 
-                                 initial_metadata.pop(popped_header["name"])
 
-                         # Push the current header to the stack
 
-                         header: HeaderType = {
 
-                             "level": current_header_level,
 
-                             "name": name,
 
-                             "data": stripped_line[len(sep):].strip(),
 
-                         }
 
-                         header_stack.append(header)
 
-                         # Update initial_metadata with the current header
 
-                         initial_metadata[name] = header["data"]
 
-                     # Add the previous line to the lines_with_metadata
 
-                     # only if current_content is not empty
 
-                     if current_content:
 
-                         lines_with_metadata.append(
 
-                             {
 
-                                 "content": "\n".join(current_content),
 
-                                 "metadata": current_metadata.copy(),
 
-                             }
 
-                         )
 
-                         current_content.clear()
 
-                     break
 
-             else:
 
-                 if stripped_line:
 
-                     current_content.append(stripped_line)
 
-                 elif current_content:
 
-                     lines_with_metadata.append(
 
-                         {
 
-                             "content": "\n".join(current_content),
 
-                             "metadata": current_metadata.copy(),
 
-                         }
 
-                     )
 
-                     current_content.clear()
 
-             current_metadata = initial_metadata.copy()
 
-         if current_content:
 
-             lines_with_metadata.append(
 
-                 {"content": "\n".join(current_content), "metadata": current_metadata}
 
-             )
 
-         # lines_with_metadata has each line with associated header metadata
 
-         # aggregate these into chunks based on common metadata
 
-         if not self.return_each_line:
 
-             return self.aggregate_lines_to_chunks(lines_with_metadata)
 
-         else:
 
-             return [
 
-                 Document(page_content=chunk["content"], metadata=chunk["metadata"])
 
-                 for chunk in lines_with_metadata
 
-             ]
 
- # should be in newer Python versions (3.10+)
 
- # @dataclass(frozen=True, kw_only=True, slots=True)
 
- @dataclass(frozen=True)
 
- class Tokenizer:
 
-     chunk_overlap: int
 
-     tokens_per_chunk: int
 
-     decode: Callable[[list[int]], str]
 
-     encode: Callable[[str], list[int]]
 
- def split_text_on_tokens(*, text: str, tokenizer: Tokenizer) -> list[str]:
 
-     """Split incoming text and return chunks using tokenizer."""
 
-     splits: list[str] = []
 
-     input_ids = tokenizer.encode(text)
 
-     start_idx = 0
 
-     cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
 
-     chunk_ids = input_ids[start_idx:cur_idx]
 
-     while start_idx < len(input_ids):
 
-         splits.append(tokenizer.decode(chunk_ids))
 
-         start_idx += tokenizer.tokens_per_chunk - tokenizer.chunk_overlap
 
-         cur_idx = min(start_idx + tokenizer.tokens_per_chunk, len(input_ids))
 
-         chunk_ids = input_ids[start_idx:cur_idx]
 
-     return splits
 
- class TokenTextSplitter(TextSplitter):
 
-     """Splitting text to tokens using model tokenizer."""
 
-     def __init__(
 
-             self,
 
-             encoding_name: str = "gpt2",
 
-             model_name: Optional[str] = None,
 
-             allowed_special: Union[Literal["all"], Set[str]] = set(),
 
-             disallowed_special: Union[Literal["all"], Collection[str]] = "all",
 
-             **kwargs: Any,
 
-     ) -> None:
 
-         """Create a new TextSplitter."""
 
-         super().__init__(**kwargs)
 
-         try:
 
-             import tiktoken
 
-         except ImportError:
 
-             raise ImportError(
 
-                 "Could not import tiktoken python package. "
 
-                 "This is needed in order to for TokenTextSplitter. "
 
-                 "Please install it with `pip install tiktoken`."
 
-             )
 
-         if model_name is not None:
 
-             enc = tiktoken.encoding_for_model(model_name)
 
-         else:
 
-             enc = tiktoken.get_encoding(encoding_name)
 
-         self._tokenizer = enc
 
-         self._allowed_special = allowed_special
 
-         self._disallowed_special = disallowed_special
 
-     def split_text(self, text: str) -> list[str]:
 
-         def _encode(_text: str) -> list[int]:
 
-             return self._tokenizer.encode(
 
-                 _text,
 
-                 allowed_special=self._allowed_special,
 
-                 disallowed_special=self._disallowed_special,
 
-             )
 
-         tokenizer = Tokenizer(
 
-             chunk_overlap=self._chunk_overlap,
 
-             tokens_per_chunk=self._chunk_size,
 
-             decode=self._tokenizer.decode,
 
-             encode=_encode,
 
-         )
 
-         return split_text_on_tokens(text=text, tokenizer=tokenizer)
 
- class RecursiveCharacterTextSplitter(TextSplitter):
 
-     """Splitting text by recursively look at characters.
 
-     Recursively tries to split by different characters to find one
 
-     that works.
 
-     """
 
-     def __init__(
 
-             self,
 
-             separators: Optional[list[str]] = None,
 
-             keep_separator: bool = True,
 
-             **kwargs: Any,
 
-     ) -> None:
 
-         """Create a new TextSplitter."""
 
-         super().__init__(keep_separator=keep_separator, **kwargs)
 
-         self._separators = separators or ["\n\n", "\n", " ", ""]
 
-     def _split_text(self, text: str, separators: list[str]) -> list[str]:
 
-         """Split incoming text and return chunks."""
 
-         final_chunks = []
 
-         # Get appropriate separator to use
 
-         separator = separators[-1]
 
-         new_separators = []
 
-         for i, _s in enumerate(separators):
 
-             if _s == "":
 
-                 separator = _s
 
-                 break
 
-             if re.search(_s, text):
 
-                 separator = _s
 
-                 new_separators = separators[i + 1:]
 
-                 break
 
-         splits = _split_text_with_regex(text, separator, self._keep_separator)
 
-         # Now go merging things, recursively splitting longer texts.
 
-         _good_splits = []
 
-         _separator = "" if self._keep_separator else separator
 
-         for s in splits:
 
-             if self._length_function(s) < self._chunk_size:
 
-                 _good_splits.append(s)
 
-             else:
 
-                 if _good_splits:
 
-                     merged_text = self._merge_splits(_good_splits, _separator)
 
-                     final_chunks.extend(merged_text)
 
-                     _good_splits = []
 
-                 if not new_separators:
 
-                     final_chunks.append(s)
 
-                 else:
 
-                     other_info = self._split_text(s, new_separators)
 
-                     final_chunks.extend(other_info)
 
-         if _good_splits:
 
-             merged_text = self._merge_splits(_good_splits, _separator)
 
-             final_chunks.extend(merged_text)
 
-         return final_chunks
 
-     def split_text(self, text: str) -> list[str]:
 
-         return self._split_text(text, self._separators)
 
 
  |