indexing_runner.py 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import Optional, List, cast
  9. from flask import current_app, Flask
  10. from flask_login import current_user
  11. from langchain.schema import Document
  12. from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
  13. from sqlalchemy.orm.exc import ObjectDeletedError
  14. from core.data_loader.file_extractor import FileExtractor
  15. from core.data_loader.loader.notion import NotionLoader
  16. from core.docstore.dataset_docstore import DatesetDocumentStore
  17. from core.generator.llm_generator import LLMGenerator
  18. from core.index.index import IndexBuilder
  19. from core.model_providers.error import ProviderTokenNotInitError
  20. from core.model_providers.model_factory import ModelFactory
  21. from core.model_providers.models.entity.message import MessageType
  22. from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
  23. from extensions.ext_database import db
  24. from extensions.ext_redis import redis_client
  25. from extensions.ext_storage import storage
  26. from libs import helper
  27. from models.dataset import Document as DatasetDocument
  28. from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
  29. from models.model import UploadFile
  30. from models.source import DataSourceBinding
  31. class IndexingRunner:
  32. def __init__(self):
  33. self.storage = storage
  34. def run(self, dataset_documents: List[DatasetDocument]):
  35. """Run the indexing process."""
  36. for dataset_document in dataset_documents:
  37. try:
  38. # get dataset
  39. dataset = Dataset.query.filter_by(
  40. id=dataset_document.dataset_id
  41. ).first()
  42. if not dataset:
  43. raise ValueError("no dataset found")
  44. # load file
  45. text_docs = self._load_data(dataset_document)
  46. # get the process rule
  47. processing_rule = db.session.query(DatasetProcessRule). \
  48. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  49. first()
  50. # get splitter
  51. splitter = self._get_splitter(processing_rule)
  52. # split to documents
  53. documents = self._step_split(
  54. text_docs=text_docs,
  55. splitter=splitter,
  56. dataset=dataset,
  57. dataset_document=dataset_document,
  58. processing_rule=processing_rule
  59. )
  60. self._build_index(
  61. dataset=dataset,
  62. dataset_document=dataset_document,
  63. documents=documents
  64. )
  65. except DocumentIsPausedException:
  66. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  67. except ProviderTokenNotInitError as e:
  68. dataset_document.indexing_status = 'error'
  69. dataset_document.error = str(e.description)
  70. dataset_document.stopped_at = datetime.datetime.utcnow()
  71. db.session.commit()
  72. except ObjectDeletedError:
  73. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  74. except Exception as e:
  75. logging.exception("consume document failed")
  76. dataset_document.indexing_status = 'error'
  77. dataset_document.error = str(e)
  78. dataset_document.stopped_at = datetime.datetime.utcnow()
  79. db.session.commit()
  80. def format_split_text(self, text):
  81. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
  82. matches = re.findall(regex, text, re.MULTILINE)
  83. result = []
  84. for match in matches:
  85. q = match[0]
  86. a = match[1]
  87. if q and a:
  88. result.append({
  89. "question": q,
  90. "answer": re.sub(r"\n\s*", "\n", a.strip())
  91. })
  92. return result
  93. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  94. """Run the indexing process when the index_status is splitting."""
  95. try:
  96. # get dataset
  97. dataset = Dataset.query.filter_by(
  98. id=dataset_document.dataset_id
  99. ).first()
  100. if not dataset:
  101. raise ValueError("no dataset found")
  102. # get exist document_segment list and delete
  103. document_segments = DocumentSegment.query.filter_by(
  104. dataset_id=dataset.id,
  105. document_id=dataset_document.id
  106. ).all()
  107. db.session.delete(document_segments)
  108. db.session.commit()
  109. # load file
  110. text_docs = self._load_data(dataset_document)
  111. # get the process rule
  112. processing_rule = db.session.query(DatasetProcessRule). \
  113. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  114. first()
  115. # get splitter
  116. splitter = self._get_splitter(processing_rule)
  117. # split to documents
  118. documents = self._step_split(
  119. text_docs=text_docs,
  120. splitter=splitter,
  121. dataset=dataset,
  122. dataset_document=dataset_document,
  123. processing_rule=processing_rule
  124. )
  125. # build index
  126. self._build_index(
  127. dataset=dataset,
  128. dataset_document=dataset_document,
  129. documents=documents
  130. )
  131. except DocumentIsPausedException:
  132. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  133. except ProviderTokenNotInitError as e:
  134. dataset_document.indexing_status = 'error'
  135. dataset_document.error = str(e.description)
  136. dataset_document.stopped_at = datetime.datetime.utcnow()
  137. db.session.commit()
  138. except Exception as e:
  139. logging.exception("consume document failed")
  140. dataset_document.indexing_status = 'error'
  141. dataset_document.error = str(e)
  142. dataset_document.stopped_at = datetime.datetime.utcnow()
  143. db.session.commit()
  144. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  145. """Run the indexing process when the index_status is indexing."""
  146. try:
  147. # get dataset
  148. dataset = Dataset.query.filter_by(
  149. id=dataset_document.dataset_id
  150. ).first()
  151. if not dataset:
  152. raise ValueError("no dataset found")
  153. # get exist document_segment list and delete
  154. document_segments = DocumentSegment.query.filter_by(
  155. dataset_id=dataset.id,
  156. document_id=dataset_document.id
  157. ).all()
  158. documents = []
  159. if document_segments:
  160. for document_segment in document_segments:
  161. # transform segment to node
  162. if document_segment.status != "completed":
  163. document = Document(
  164. page_content=document_segment.content,
  165. metadata={
  166. "doc_id": document_segment.index_node_id,
  167. "doc_hash": document_segment.index_node_hash,
  168. "document_id": document_segment.document_id,
  169. "dataset_id": document_segment.dataset_id,
  170. }
  171. )
  172. documents.append(document)
  173. # build index
  174. self._build_index(
  175. dataset=dataset,
  176. dataset_document=dataset_document,
  177. documents=documents
  178. )
  179. except DocumentIsPausedException:
  180. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  181. except ProviderTokenNotInitError as e:
  182. dataset_document.indexing_status = 'error'
  183. dataset_document.error = str(e.description)
  184. dataset_document.stopped_at = datetime.datetime.utcnow()
  185. db.session.commit()
  186. except Exception as e:
  187. logging.exception("consume document failed")
  188. dataset_document.indexing_status = 'error'
  189. dataset_document.error = str(e)
  190. dataset_document.stopped_at = datetime.datetime.utcnow()
  191. db.session.commit()
  192. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  193. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  194. indexing_technique: str = 'economy') -> dict:
  195. """
  196. Estimate the indexing for the document.
  197. """
  198. embedding_model = None
  199. if dataset_id:
  200. dataset = Dataset.query.filter_by(
  201. id=dataset_id
  202. ).first()
  203. if not dataset:
  204. raise ValueError('Dataset not found.')
  205. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  206. embedding_model = ModelFactory.get_embedding_model(
  207. tenant_id=dataset.tenant_id,
  208. model_provider_name=dataset.embedding_model_provider,
  209. model_name=dataset.embedding_model
  210. )
  211. else:
  212. if indexing_technique == 'high_quality':
  213. embedding_model = ModelFactory.get_embedding_model(
  214. tenant_id=tenant_id
  215. )
  216. tokens = 0
  217. preview_texts = []
  218. total_segments = 0
  219. for file_detail in file_details:
  220. # load data from file
  221. text_docs = FileExtractor.load(file_detail)
  222. processing_rule = DatasetProcessRule(
  223. mode=tmp_processing_rule["mode"],
  224. rules=json.dumps(tmp_processing_rule["rules"])
  225. )
  226. # get splitter
  227. splitter = self._get_splitter(processing_rule)
  228. # split to documents
  229. documents = self._split_to_documents_for_estimate(
  230. text_docs=text_docs,
  231. splitter=splitter,
  232. processing_rule=processing_rule
  233. )
  234. total_segments += len(documents)
  235. for document in documents:
  236. if len(preview_texts) < 5:
  237. preview_texts.append(document.page_content)
  238. if indexing_technique == 'high_quality' or embedding_model:
  239. tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
  240. if doc_form and doc_form == 'qa_model':
  241. text_generation_model = ModelFactory.get_text_generation_model(
  242. tenant_id=tenant_id
  243. )
  244. if len(preview_texts) > 0:
  245. # qa model document
  246. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  247. doc_language)
  248. document_qa_list = self.format_split_text(response)
  249. return {
  250. "total_segments": total_segments * 20,
  251. "tokens": total_segments * 2000,
  252. "total_price": '{:f}'.format(
  253. text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
  254. "currency": embedding_model.get_currency(),
  255. "qa_preview": document_qa_list,
  256. "preview": preview_texts
  257. }
  258. return {
  259. "total_segments": total_segments,
  260. "tokens": tokens,
  261. "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
  262. "currency": embedding_model.get_currency() if embedding_model else 'USD',
  263. "preview": preview_texts
  264. }
  265. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
  266. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  267. indexing_technique: str = 'economy') -> dict:
  268. """
  269. Estimate the indexing for the document.
  270. """
  271. embedding_model = None
  272. if dataset_id:
  273. dataset = Dataset.query.filter_by(
  274. id=dataset_id
  275. ).first()
  276. if not dataset:
  277. raise ValueError('Dataset not found.')
  278. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  279. embedding_model = ModelFactory.get_embedding_model(
  280. tenant_id=dataset.tenant_id,
  281. model_provider_name=dataset.embedding_model_provider,
  282. model_name=dataset.embedding_model
  283. )
  284. else:
  285. if indexing_technique == 'high_quality':
  286. embedding_model = ModelFactory.get_embedding_model(
  287. tenant_id=tenant_id
  288. )
  289. # load data from notion
  290. tokens = 0
  291. preview_texts = []
  292. total_segments = 0
  293. for notion_info in notion_info_list:
  294. workspace_id = notion_info['workspace_id']
  295. data_source_binding = DataSourceBinding.query.filter(
  296. db.and_(
  297. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  298. DataSourceBinding.provider == 'notion',
  299. DataSourceBinding.disabled == False,
  300. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  301. )
  302. ).first()
  303. if not data_source_binding:
  304. raise ValueError('Data source binding not found.')
  305. for page in notion_info['pages']:
  306. loader = NotionLoader(
  307. notion_access_token=data_source_binding.access_token,
  308. notion_workspace_id=workspace_id,
  309. notion_obj_id=page['page_id'],
  310. notion_page_type=page['type']
  311. )
  312. documents = loader.load()
  313. processing_rule = DatasetProcessRule(
  314. mode=tmp_processing_rule["mode"],
  315. rules=json.dumps(tmp_processing_rule["rules"])
  316. )
  317. # get splitter
  318. splitter = self._get_splitter(processing_rule)
  319. # split to documents
  320. documents = self._split_to_documents_for_estimate(
  321. text_docs=documents,
  322. splitter=splitter,
  323. processing_rule=processing_rule
  324. )
  325. total_segments += len(documents)
  326. for document in documents:
  327. if len(preview_texts) < 5:
  328. preview_texts.append(document.page_content)
  329. if indexing_technique == 'high_quality' or embedding_model:
  330. tokens += embedding_model.get_num_tokens(document.page_content)
  331. if doc_form and doc_form == 'qa_model':
  332. text_generation_model = ModelFactory.get_text_generation_model(
  333. tenant_id=tenant_id
  334. )
  335. if len(preview_texts) > 0:
  336. # qa model document
  337. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  338. doc_language)
  339. document_qa_list = self.format_split_text(response)
  340. return {
  341. "total_segments": total_segments * 20,
  342. "tokens": total_segments * 2000,
  343. "total_price": '{:f}'.format(
  344. text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.USER)),
  345. "currency": embedding_model.get_currency(),
  346. "qa_preview": document_qa_list,
  347. "preview": preview_texts
  348. }
  349. return {
  350. "total_segments": total_segments,
  351. "tokens": tokens,
  352. "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
  353. "currency": embedding_model.get_currency() if embedding_model else 'USD',
  354. "preview": preview_texts
  355. }
  356. def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
  357. # load file
  358. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  359. return []
  360. data_source_info = dataset_document.data_source_info_dict
  361. text_docs = []
  362. if dataset_document.data_source_type == 'upload_file':
  363. if not data_source_info or 'upload_file_id' not in data_source_info:
  364. raise ValueError("no upload file found")
  365. file_detail = db.session.query(UploadFile). \
  366. filter(UploadFile.id == data_source_info['upload_file_id']). \
  367. one_or_none()
  368. if file_detail:
  369. text_docs = FileExtractor.load(file_detail)
  370. elif dataset_document.data_source_type == 'notion_import':
  371. loader = NotionLoader.from_document(dataset_document)
  372. text_docs = loader.load()
  373. # update document status to splitting
  374. self._update_document_index_status(
  375. document_id=dataset_document.id,
  376. after_indexing_status="splitting",
  377. extra_update_params={
  378. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  379. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  380. }
  381. )
  382. # replace doc id to document model id
  383. text_docs = cast(List[Document], text_docs)
  384. for text_doc in text_docs:
  385. # remove invalid symbol
  386. text_doc.page_content = self.filter_string(text_doc.page_content)
  387. text_doc.metadata['document_id'] = dataset_document.id
  388. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  389. return text_docs
  390. def filter_string(self, text):
  391. text = re.sub(r'<\|', '<', text)
  392. text = re.sub(r'\|>', '>', text)
  393. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
  394. return text
  395. def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
  396. """
  397. Get the NodeParser object according to the processing rule.
  398. """
  399. if processing_rule.mode == "custom":
  400. # The user-defined segmentation rule
  401. rules = json.loads(processing_rule.rules)
  402. segmentation = rules["segmentation"]
  403. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  404. raise ValueError("Custom segment length should be between 50 and 1000.")
  405. separator = segmentation["separator"]
  406. if separator:
  407. separator = separator.replace('\\n', '\n')
  408. character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
  409. chunk_size=segmentation["max_tokens"],
  410. chunk_overlap=0,
  411. fixed_separator=separator,
  412. separators=["\n\n", "。", ".", " ", ""]
  413. )
  414. else:
  415. # Automatic segmentation
  416. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  417. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  418. chunk_overlap=0,
  419. separators=["\n\n", "。", ".", " ", ""]
  420. )
  421. return character_splitter
  422. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  423. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  424. -> List[Document]:
  425. """
  426. Split the text documents into documents and save them to the document segment.
  427. """
  428. documents = self._split_to_documents(
  429. text_docs=text_docs,
  430. splitter=splitter,
  431. processing_rule=processing_rule,
  432. tenant_id=dataset.tenant_id,
  433. document_form=dataset_document.doc_form,
  434. document_language=dataset_document.doc_language
  435. )
  436. # save node to document segment
  437. doc_store = DatesetDocumentStore(
  438. dataset=dataset,
  439. user_id=dataset_document.created_by,
  440. document_id=dataset_document.id
  441. )
  442. # add document segments
  443. doc_store.add_documents(documents)
  444. # update document status to indexing
  445. cur_time = datetime.datetime.utcnow()
  446. self._update_document_index_status(
  447. document_id=dataset_document.id,
  448. after_indexing_status="indexing",
  449. extra_update_params={
  450. DatasetDocument.cleaning_completed_at: cur_time,
  451. DatasetDocument.splitting_completed_at: cur_time,
  452. }
  453. )
  454. # update segment status to indexing
  455. self._update_segments_by_document(
  456. dataset_document_id=dataset_document.id,
  457. update_params={
  458. DocumentSegment.status: "indexing",
  459. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  460. }
  461. )
  462. return documents
  463. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  464. processing_rule: DatasetProcessRule, tenant_id: str,
  465. document_form: str, document_language: str) -> List[Document]:
  466. """
  467. Split the text documents into nodes.
  468. """
  469. all_documents = []
  470. all_qa_documents = []
  471. for text_doc in text_docs:
  472. # document clean
  473. document_text = self._document_clean(text_doc.page_content, processing_rule)
  474. text_doc.page_content = document_text
  475. # parse document to nodes
  476. documents = splitter.split_documents([text_doc])
  477. split_documents = []
  478. for document_node in documents:
  479. if document_node.page_content.strip():
  480. doc_id = str(uuid.uuid4())
  481. hash = helper.generate_text_hash(document_node.page_content)
  482. document_node.metadata['doc_id'] = doc_id
  483. document_node.metadata['doc_hash'] = hash
  484. split_documents.append(document_node)
  485. all_documents.extend(split_documents)
  486. # processing qa document
  487. if document_form == 'qa_model':
  488. for i in range(0, len(all_documents), 10):
  489. threads = []
  490. sub_documents = all_documents[i:i + 10]
  491. for doc in sub_documents:
  492. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  493. 'flask_app': current_app._get_current_object(),
  494. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  495. 'document_language': document_language})
  496. threads.append(document_format_thread)
  497. document_format_thread.start()
  498. for thread in threads:
  499. thread.join()
  500. return all_qa_documents
  501. return all_documents
  502. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  503. format_documents = []
  504. if document_node.page_content is None or not document_node.page_content.strip():
  505. return
  506. with flask_app.app_context():
  507. try:
  508. # qa model document
  509. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  510. document_qa_list = self.format_split_text(response)
  511. qa_documents = []
  512. for result in document_qa_list:
  513. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  514. doc_id = str(uuid.uuid4())
  515. hash = helper.generate_text_hash(result['question'])
  516. qa_document.metadata['answer'] = result['answer']
  517. qa_document.metadata['doc_id'] = doc_id
  518. qa_document.metadata['doc_hash'] = hash
  519. qa_documents.append(qa_document)
  520. format_documents.extend(qa_documents)
  521. except Exception as e:
  522. logging.exception(e)
  523. all_qa_documents.extend(format_documents)
  524. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  525. processing_rule: DatasetProcessRule) -> List[Document]:
  526. """
  527. Split the text documents into nodes.
  528. """
  529. all_documents = []
  530. for text_doc in text_docs:
  531. # document clean
  532. document_text = self._document_clean(text_doc.page_content, processing_rule)
  533. text_doc.page_content = document_text
  534. # parse document to nodes
  535. documents = splitter.split_documents([text_doc])
  536. split_documents = []
  537. for document in documents:
  538. if document.page_content is None or not document.page_content.strip():
  539. continue
  540. doc_id = str(uuid.uuid4())
  541. hash = helper.generate_text_hash(document.page_content)
  542. document.metadata['doc_id'] = doc_id
  543. document.metadata['doc_hash'] = hash
  544. split_documents.append(document)
  545. all_documents.extend(split_documents)
  546. return all_documents
  547. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  548. """
  549. Clean the document text according to the processing rules.
  550. """
  551. if processing_rule.mode == "automatic":
  552. rules = DatasetProcessRule.AUTOMATIC_RULES
  553. else:
  554. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  555. if 'pre_processing_rules' in rules:
  556. pre_processing_rules = rules["pre_processing_rules"]
  557. for pre_processing_rule in pre_processing_rules:
  558. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  559. # Remove extra spaces
  560. pattern = r'\n{3,}'
  561. text = re.sub(pattern, '\n\n', text)
  562. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  563. text = re.sub(pattern, ' ', text)
  564. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  565. # Remove email
  566. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  567. text = re.sub(pattern, '', text)
  568. # Remove URL
  569. pattern = r'https?://[^\s]+'
  570. text = re.sub(pattern, '', text)
  571. return text
  572. def format_split_text(self, text):
  573. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" # 匹配Q和A的正则表达式
  574. matches = re.findall(regex, text, re.MULTILINE) # 获取所有匹配到的结果
  575. result = [] # 存储最终的结果
  576. for match in matches:
  577. q = match[0]
  578. a = match[1]
  579. if q and a:
  580. # 如果Q和A都存在,就将其添加到结果中
  581. result.append({
  582. "question": q,
  583. "answer": re.sub(r"\n\s*", "\n", a.strip())
  584. })
  585. return result
  586. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  587. """
  588. Build the index for the document.
  589. """
  590. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  591. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  592. embedding_model = None
  593. if dataset.indexing_technique == 'high_quality':
  594. embedding_model = ModelFactory.get_embedding_model(
  595. tenant_id=dataset.tenant_id,
  596. model_provider_name=dataset.embedding_model_provider,
  597. model_name=dataset.embedding_model
  598. )
  599. # chunk nodes by chunk size
  600. indexing_start_at = time.perf_counter()
  601. tokens = 0
  602. chunk_size = 100
  603. for i in range(0, len(documents), chunk_size):
  604. # check document is paused
  605. self._check_document_paused_status(dataset_document.id)
  606. chunk_documents = documents[i:i + chunk_size]
  607. if dataset.indexing_technique == 'high_quality' or embedding_model:
  608. tokens += sum(
  609. embedding_model.get_num_tokens(document.page_content)
  610. for document in chunk_documents
  611. )
  612. # save vector index
  613. if vector_index:
  614. vector_index.add_texts(chunk_documents)
  615. # save keyword index
  616. keyword_table_index.add_texts(chunk_documents)
  617. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  618. db.session.query(DocumentSegment).filter(
  619. DocumentSegment.document_id == dataset_document.id,
  620. DocumentSegment.index_node_id.in_(document_ids),
  621. DocumentSegment.status == "indexing"
  622. ).update({
  623. DocumentSegment.status: "completed",
  624. DocumentSegment.enabled: True,
  625. DocumentSegment.completed_at: datetime.datetime.utcnow()
  626. })
  627. db.session.commit()
  628. indexing_end_at = time.perf_counter()
  629. # update document status to completed
  630. self._update_document_index_status(
  631. document_id=dataset_document.id,
  632. after_indexing_status="completed",
  633. extra_update_params={
  634. DatasetDocument.tokens: tokens,
  635. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  636. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  637. }
  638. )
  639. def _check_document_paused_status(self, document_id: str):
  640. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  641. result = redis_client.get(indexing_cache_key)
  642. if result:
  643. raise DocumentIsPausedException()
  644. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  645. extra_update_params: Optional[dict] = None) -> None:
  646. """
  647. Update the document indexing status.
  648. """
  649. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  650. if count > 0:
  651. raise DocumentIsPausedException()
  652. document = DatasetDocument.query.filter_by(id=document_id).first()
  653. if not document:
  654. raise DocumentIsDeletedPausedException()
  655. update_params = {
  656. DatasetDocument.indexing_status: after_indexing_status
  657. }
  658. if extra_update_params:
  659. update_params.update(extra_update_params)
  660. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  661. db.session.commit()
  662. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  663. """
  664. Update the document segment by document id.
  665. """
  666. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  667. db.session.commit()
  668. def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
  669. """
  670. Batch add segments index processing
  671. """
  672. documents = []
  673. for segment in segments:
  674. document = Document(
  675. page_content=segment.content,
  676. metadata={
  677. "doc_id": segment.index_node_id,
  678. "doc_hash": segment.index_node_hash,
  679. "document_id": segment.document_id,
  680. "dataset_id": segment.dataset_id,
  681. }
  682. )
  683. documents.append(document)
  684. # save vector index
  685. index = IndexBuilder.get_index(dataset, 'high_quality')
  686. if index:
  687. index.add_texts(documents, duplicate_check=True)
  688. # save keyword index
  689. index = IndexBuilder.get_index(dataset, 'economy')
  690. if index:
  691. index.add_texts(documents)
  692. class DocumentIsPausedException(Exception):
  693. pass
  694. class DocumentIsDeletedPausedException(Exception):
  695. pass