completion.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. import concurrent
  2. import json
  3. import logging
  4. from concurrent.futures import ThreadPoolExecutor
  5. from typing import Optional, List, Union, Tuple
  6. from flask import current_app, Flask
  7. from requests.exceptions import ChunkedEncodingError
  8. from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
  9. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  10. from core.callback_handler.llm_callback_handler import LLMCallbackHandler
  11. from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException, \
  12. ConversationTaskInterruptException
  13. from core.external_data_tool.factory import ExternalDataToolFactory
  14. from core.model_providers.error import LLMBadRequestError
  15. from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
  16. ReadOnlyConversationTokenDBBufferSharedMemory
  17. from core.model_providers.model_factory import ModelFactory
  18. from core.model_providers.models.entity.message import PromptMessage
  19. from core.model_providers.models.llm.base import BaseLLM
  20. from core.orchestrator_rule_parser import OrchestratorRuleParser
  21. from core.prompt.prompt_template import PromptTemplateParser
  22. from core.prompt.prompt_transform import PromptTransform
  23. from models.model import App, AppModelConfig, Account, Conversation, EndUser
  24. from core.moderation.base import ModerationException, ModerationAction
  25. from core.moderation.factory import ModerationFactory
  26. class Completion:
  27. @classmethod
  28. def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
  29. user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool,
  30. is_override: bool = False, retriever_from: str = 'dev'):
  31. """
  32. errors: ProviderTokenNotInitError
  33. """
  34. query = PromptTemplateParser.remove_template_variables(query)
  35. memory = None
  36. if conversation:
  37. # get memory of conversation (read-only)
  38. memory = cls.get_memory_from_conversation(
  39. tenant_id=app.tenant_id,
  40. app_model_config=app_model_config,
  41. conversation=conversation,
  42. return_messages=False
  43. )
  44. inputs = conversation.inputs
  45. final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  46. tenant_id=app.tenant_id,
  47. model_config=app_model_config.model_dict,
  48. streaming=streaming
  49. )
  50. conversation_message_task = ConversationMessageTask(
  51. task_id=task_id,
  52. app=app,
  53. app_model_config=app_model_config,
  54. user=user,
  55. conversation=conversation,
  56. is_override=is_override,
  57. inputs=inputs,
  58. query=query,
  59. streaming=streaming,
  60. model_instance=final_model_instance
  61. )
  62. rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
  63. mode=app.mode,
  64. model_instance=final_model_instance,
  65. app_model_config=app_model_config,
  66. query=query,
  67. inputs=inputs
  68. )
  69. # init orchestrator rule parser
  70. orchestrator_rule_parser = OrchestratorRuleParser(
  71. tenant_id=app.tenant_id,
  72. app_model_config=app_model_config
  73. )
  74. try:
  75. chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
  76. try:
  77. # process sensitive_word_avoidance
  78. inputs, query = cls.moderation_for_inputs(app.id, app.tenant_id, app_model_config, inputs, query)
  79. except ModerationException as e:
  80. cls.run_final_llm(
  81. model_instance=final_model_instance,
  82. mode=app.mode,
  83. app_model_config=app_model_config,
  84. query=query,
  85. inputs=inputs,
  86. agent_execute_result=None,
  87. conversation_message_task=conversation_message_task,
  88. memory=memory,
  89. fake_response=str(e)
  90. )
  91. return
  92. # fill in variable inputs from external data tools if exists
  93. external_data_tools = app_model_config.external_data_tools_list
  94. if external_data_tools:
  95. inputs = cls.fill_in_inputs_from_external_data_tools(
  96. tenant_id=app.tenant_id,
  97. app_id=app.id,
  98. external_data_tools=external_data_tools,
  99. inputs=inputs,
  100. query=query
  101. )
  102. # get agent executor
  103. agent_executor = orchestrator_rule_parser.to_agent_executor(
  104. conversation_message_task=conversation_message_task,
  105. memory=memory,
  106. rest_tokens=rest_tokens_for_context_and_memory,
  107. chain_callback=chain_callback,
  108. retriever_from=retriever_from
  109. )
  110. query_for_agent = cls.get_query_for_agent(app, app_model_config, query, inputs)
  111. # run agent executor
  112. agent_execute_result = None
  113. if query_for_agent and agent_executor:
  114. should_use_agent = agent_executor.should_use_agent(query_for_agent)
  115. if should_use_agent:
  116. agent_execute_result = agent_executor.run(query_for_agent)
  117. # When no extra pre prompt is specified,
  118. # the output of the agent can be used directly as the main output content without calling LLM again
  119. fake_response = None
  120. if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
  121. and agent_execute_result.strategy not in [PlanningStrategy.ROUTER,
  122. PlanningStrategy.REACT_ROUTER]:
  123. fake_response = agent_execute_result.output
  124. # run the final llm
  125. cls.run_final_llm(
  126. model_instance=final_model_instance,
  127. mode=app.mode,
  128. app_model_config=app_model_config,
  129. query=query,
  130. inputs=inputs,
  131. agent_execute_result=agent_execute_result,
  132. conversation_message_task=conversation_message_task,
  133. memory=memory,
  134. fake_response=fake_response
  135. )
  136. except (ConversationTaskInterruptException, ConversationTaskStoppedException):
  137. return
  138. except ChunkedEncodingError as e:
  139. # Interrupt by LLM (like OpenAI), handle it.
  140. logging.warning(f'ChunkedEncodingError: {e}')
  141. conversation_message_task.end()
  142. return
  143. @classmethod
  144. def moderation_for_inputs(cls, app_id: str, tenant_id: str, app_model_config: AppModelConfig, inputs: dict, query: str):
  145. if not app_model_config.sensitive_word_avoidance_dict['enabled']:
  146. return inputs, query
  147. type = app_model_config.sensitive_word_avoidance_dict['type']
  148. moderation = ModerationFactory(type, app_id, tenant_id, app_model_config.sensitive_word_avoidance_dict['config'])
  149. moderation_result = moderation.moderation_for_inputs(inputs, query)
  150. if not moderation_result.flagged:
  151. return inputs, query
  152. if moderation_result.action == ModerationAction.DIRECT_OUTPUT:
  153. raise ModerationException(moderation_result.preset_response)
  154. elif moderation_result.action == ModerationAction.OVERRIDED:
  155. inputs = moderation_result.inputs
  156. query = moderation_result.query
  157. return inputs, query
  158. @classmethod
  159. def fill_in_inputs_from_external_data_tools(cls, tenant_id: str, app_id: str, external_data_tools: list[dict],
  160. inputs: dict, query: str) -> dict:
  161. """
  162. Fill in variable inputs from external data tools if exists.
  163. :param tenant_id: workspace id
  164. :param app_id: app id
  165. :param external_data_tools: external data tools configs
  166. :param inputs: the inputs
  167. :param query: the query
  168. :return: the filled inputs
  169. """
  170. # Group tools by type and config
  171. grouped_tools = {}
  172. for tool in external_data_tools:
  173. if not tool.get("enabled"):
  174. continue
  175. tool_key = (tool.get("type"), json.dumps(tool.get("config"), sort_keys=True))
  176. grouped_tools.setdefault(tool_key, []).append(tool)
  177. results = {}
  178. with ThreadPoolExecutor() as executor:
  179. futures = {}
  180. for tool in external_data_tools:
  181. if not tool.get("enabled"):
  182. continue
  183. future = executor.submit(
  184. cls.query_external_data_tool, current_app._get_current_object(), tenant_id, app_id, tool,
  185. inputs, query
  186. )
  187. futures[future] = tool
  188. for future in concurrent.futures.as_completed(futures):
  189. tool_variable, result = future.result()
  190. results[tool_variable] = result
  191. inputs.update(results)
  192. return inputs
  193. @classmethod
  194. def query_external_data_tool(cls, flask_app: Flask, tenant_id: str, app_id: str, external_data_tool: dict,
  195. inputs: dict, query: str) -> Tuple[Optional[str], Optional[str]]:
  196. with flask_app.app_context():
  197. tool_variable = external_data_tool.get("variable")
  198. tool_type = external_data_tool.get("type")
  199. tool_config = external_data_tool.get("config")
  200. external_data_tool_factory = ExternalDataToolFactory(
  201. name=tool_type,
  202. tenant_id=tenant_id,
  203. app_id=app_id,
  204. variable=tool_variable,
  205. config=tool_config
  206. )
  207. # query external data tool
  208. result = external_data_tool_factory.query(
  209. inputs=inputs,
  210. query=query
  211. )
  212. return tool_variable, result
  213. @classmethod
  214. def get_query_for_agent(cls, app: App, app_model_config: AppModelConfig, query: str, inputs: dict) -> str:
  215. if app.mode != 'completion':
  216. return query
  217. return inputs.get(app_model_config.dataset_query_variable, "")
  218. @classmethod
  219. def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
  220. inputs: dict,
  221. agent_execute_result: Optional[AgentExecuteResult],
  222. conversation_message_task: ConversationMessageTask,
  223. memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory],
  224. fake_response: Optional[str]):
  225. prompt_transform = PromptTransform()
  226. # get llm prompt
  227. if app_model_config.prompt_type == 'simple':
  228. prompt_messages, stop_words = prompt_transform.get_prompt(
  229. mode=mode,
  230. pre_prompt=app_model_config.pre_prompt,
  231. inputs=inputs,
  232. query=query,
  233. context=agent_execute_result.output if agent_execute_result else None,
  234. memory=memory,
  235. model_instance=model_instance
  236. )
  237. else:
  238. prompt_messages = prompt_transform.get_advanced_prompt(
  239. app_mode=mode,
  240. app_model_config=app_model_config,
  241. inputs=inputs,
  242. query=query,
  243. context=agent_execute_result.output if agent_execute_result else None,
  244. memory=memory,
  245. model_instance=model_instance
  246. )
  247. model_config = app_model_config.model_dict
  248. completion_params = model_config.get("completion_params", {})
  249. stop_words = completion_params.get("stop", [])
  250. cls.recale_llm_max_tokens(
  251. model_instance=model_instance,
  252. prompt_messages=prompt_messages,
  253. )
  254. response = model_instance.run(
  255. messages=prompt_messages,
  256. stop=stop_words if stop_words else None,
  257. callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
  258. fake_response=fake_response
  259. )
  260. return response
  261. @classmethod
  262. def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
  263. max_token_limit: int) -> str:
  264. """Get memory messages."""
  265. memory.max_token_limit = max_token_limit
  266. memory_key = memory.memory_variables[0]
  267. external_context = memory.load_memory_variables({})
  268. return external_context[memory_key]
  269. @classmethod
  270. def get_memory_from_conversation(cls, tenant_id: str, app_model_config: AppModelConfig,
  271. conversation: Conversation,
  272. **kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
  273. # only for calc token in memory
  274. memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  275. tenant_id=tenant_id,
  276. model_config=app_model_config.model_dict
  277. )
  278. # use llm config from conversation
  279. memory = ReadOnlyConversationTokenDBBufferSharedMemory(
  280. conversation=conversation,
  281. model_instance=memory_model_instance,
  282. max_token_limit=kwargs.get("max_token_limit", 2048),
  283. memory_key=kwargs.get("memory_key", "chat_history"),
  284. return_messages=kwargs.get("return_messages", True),
  285. input_key=kwargs.get("input_key", "input"),
  286. output_key=kwargs.get("output_key", "output"),
  287. message_limit=kwargs.get("message_limit", 10),
  288. )
  289. return memory
  290. @classmethod
  291. def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
  292. query: str, inputs: dict) -> int:
  293. model_limited_tokens = model_instance.model_rules.max_tokens.max
  294. max_tokens = model_instance.get_model_kwargs().max_tokens
  295. if model_limited_tokens is None:
  296. return -1
  297. if max_tokens is None:
  298. max_tokens = 0
  299. prompt_transform = PromptTransform()
  300. prompt_messages = []
  301. # get prompt without memory and context
  302. if app_model_config.prompt_type == 'simple':
  303. prompt_messages, _ = prompt_transform.get_prompt(
  304. mode=mode,
  305. pre_prompt=app_model_config.pre_prompt,
  306. inputs=inputs,
  307. query=query,
  308. context=None,
  309. memory=None,
  310. model_instance=model_instance
  311. )
  312. else:
  313. prompt_messages = prompt_transform.get_advanced_prompt(
  314. app_mode=mode,
  315. app_model_config=app_model_config,
  316. inputs=inputs,
  317. query=query,
  318. context=None,
  319. memory=None,
  320. model_instance=model_instance
  321. )
  322. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  323. rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
  324. if rest_tokens < 0:
  325. raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
  326. "or shrink the max token, or switch to a llm with a larger token limit size.")
  327. return rest_tokens
  328. @classmethod
  329. def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
  330. # recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
  331. model_limited_tokens = model_instance.model_rules.max_tokens.max
  332. max_tokens = model_instance.get_model_kwargs().max_tokens
  333. if model_limited_tokens is None:
  334. return
  335. if max_tokens is None:
  336. max_tokens = 0
  337. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  338. if prompt_tokens + max_tokens > model_limited_tokens:
  339. max_tokens = max(model_limited_tokens - prompt_tokens, 16)
  340. # update model instance max tokens
  341. model_kwargs = model_instance.get_model_kwargs()
  342. model_kwargs.max_tokens = max_tokens
  343. model_instance.set_model_kwargs(model_kwargs)