advanced_prompt_transform.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. from typing import Optional, Union
  2. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  3. from core.file.file_obj import FileVar
  4. from core.memory.token_buffer_memory import TokenBufferMemory
  5. from core.model_runtime.entities.message_entities import (
  6. AssistantPromptMessage,
  7. PromptMessage,
  8. PromptMessageRole,
  9. SystemPromptMessage,
  10. TextPromptMessageContent,
  11. UserPromptMessage,
  12. )
  13. from core.prompt.entities.advanced_prompt_entities import ChatModelMessage, CompletionModelPromptTemplate, MemoryConfig
  14. from core.prompt.prompt_transform import PromptTransform
  15. from core.prompt.simple_prompt_transform import ModelMode
  16. from core.prompt.utils.prompt_template_parser import PromptTemplateParser
  17. class AdvancedPromptTransform(PromptTransform):
  18. """
  19. Advanced Prompt Transform for Workflow LLM Node.
  20. """
  21. def __init__(self, with_variable_tmpl: bool = False) -> None:
  22. self.with_variable_tmpl = with_variable_tmpl
  23. def get_prompt(self, prompt_template: Union[list[ChatModelMessage], CompletionModelPromptTemplate],
  24. inputs: dict,
  25. query: str,
  26. files: list[FileVar],
  27. context: Optional[str],
  28. memory_config: Optional[MemoryConfig],
  29. memory: Optional[TokenBufferMemory],
  30. model_config: ModelConfigWithCredentialsEntity,
  31. query_prompt_template: Optional[str] = None) -> list[PromptMessage]:
  32. inputs = {key: str(value) for key, value in inputs.items()}
  33. prompt_messages = []
  34. model_mode = ModelMode.value_of(model_config.mode)
  35. if model_mode == ModelMode.COMPLETION:
  36. prompt_messages = self._get_completion_model_prompt_messages(
  37. prompt_template=prompt_template,
  38. inputs=inputs,
  39. query=query,
  40. files=files,
  41. context=context,
  42. memory_config=memory_config,
  43. memory=memory,
  44. model_config=model_config
  45. )
  46. elif model_mode == ModelMode.CHAT:
  47. prompt_messages = self._get_chat_model_prompt_messages(
  48. prompt_template=prompt_template,
  49. inputs=inputs,
  50. query=query,
  51. query_prompt_template=query_prompt_template,
  52. files=files,
  53. context=context,
  54. memory_config=memory_config,
  55. memory=memory,
  56. model_config=model_config
  57. )
  58. return prompt_messages
  59. def _get_completion_model_prompt_messages(self,
  60. prompt_template: CompletionModelPromptTemplate,
  61. inputs: dict,
  62. query: Optional[str],
  63. files: list[FileVar],
  64. context: Optional[str],
  65. memory_config: Optional[MemoryConfig],
  66. memory: Optional[TokenBufferMemory],
  67. model_config: ModelConfigWithCredentialsEntity) -> list[PromptMessage]:
  68. """
  69. Get completion model prompt messages.
  70. """
  71. raw_prompt = prompt_template.text
  72. prompt_messages = []
  73. prompt_template = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  74. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  75. prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
  76. if memory and memory_config:
  77. role_prefix = memory_config.role_prefix
  78. prompt_inputs = self._set_histories_variable(
  79. memory=memory,
  80. memory_config=memory_config,
  81. raw_prompt=raw_prompt,
  82. role_prefix=role_prefix,
  83. prompt_template=prompt_template,
  84. prompt_inputs=prompt_inputs,
  85. model_config=model_config
  86. )
  87. if query:
  88. prompt_inputs = self._set_query_variable(query, prompt_template, prompt_inputs)
  89. prompt = prompt_template.format(
  90. prompt_inputs
  91. )
  92. if files:
  93. prompt_message_contents = [TextPromptMessageContent(data=prompt)]
  94. for file in files:
  95. prompt_message_contents.append(file.prompt_message_content)
  96. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  97. else:
  98. prompt_messages.append(UserPromptMessage(content=prompt))
  99. return prompt_messages
  100. def _get_chat_model_prompt_messages(self,
  101. prompt_template: list[ChatModelMessage],
  102. inputs: dict,
  103. query: Optional[str],
  104. files: list[FileVar],
  105. context: Optional[str],
  106. memory_config: Optional[MemoryConfig],
  107. memory: Optional[TokenBufferMemory],
  108. model_config: ModelConfigWithCredentialsEntity,
  109. query_prompt_template: Optional[str] = None) -> list[PromptMessage]:
  110. """
  111. Get chat model prompt messages.
  112. """
  113. raw_prompt_list = prompt_template
  114. prompt_messages = []
  115. for prompt_item in raw_prompt_list:
  116. raw_prompt = prompt_item.text
  117. prompt_template = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  118. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  119. prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
  120. prompt = prompt_template.format(
  121. prompt_inputs
  122. )
  123. if prompt_item.role == PromptMessageRole.USER:
  124. prompt_messages.append(UserPromptMessage(content=prompt))
  125. elif prompt_item.role == PromptMessageRole.SYSTEM and prompt:
  126. prompt_messages.append(SystemPromptMessage(content=prompt))
  127. elif prompt_item.role == PromptMessageRole.ASSISTANT:
  128. prompt_messages.append(AssistantPromptMessage(content=prompt))
  129. if query and query_prompt_template:
  130. prompt_template = PromptTemplateParser(
  131. template=query_prompt_template,
  132. with_variable_tmpl=self.with_variable_tmpl
  133. )
  134. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  135. prompt_inputs['#sys.query#'] = query
  136. prompt_inputs = self._set_context_variable(context, prompt_template, prompt_inputs)
  137. query = prompt_template.format(
  138. prompt_inputs
  139. )
  140. if memory and memory_config:
  141. prompt_messages = self._append_chat_histories(memory, memory_config, prompt_messages, model_config)
  142. if files:
  143. prompt_message_contents = [TextPromptMessageContent(data=query)]
  144. for file in files:
  145. prompt_message_contents.append(file.prompt_message_content)
  146. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  147. else:
  148. prompt_messages.append(UserPromptMessage(content=query))
  149. elif files:
  150. if not query:
  151. # get last message
  152. last_message = prompt_messages[-1] if prompt_messages else None
  153. if last_message and last_message.role == PromptMessageRole.USER:
  154. # get last user message content and add files
  155. prompt_message_contents = [TextPromptMessageContent(data=last_message.content)]
  156. for file in files:
  157. prompt_message_contents.append(file.prompt_message_content)
  158. last_message.content = prompt_message_contents
  159. else:
  160. prompt_message_contents = [TextPromptMessageContent(data='')] # not for query
  161. for file in files:
  162. prompt_message_contents.append(file.prompt_message_content)
  163. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  164. else:
  165. prompt_message_contents = [TextPromptMessageContent(data=query)]
  166. for file in files:
  167. prompt_message_contents.append(file.prompt_message_content)
  168. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  169. elif query:
  170. prompt_messages.append(UserPromptMessage(content=query))
  171. return prompt_messages
  172. def _set_context_variable(self, context: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> dict:
  173. if '#context#' in prompt_template.variable_keys:
  174. if context:
  175. prompt_inputs['#context#'] = context
  176. else:
  177. prompt_inputs['#context#'] = ''
  178. return prompt_inputs
  179. def _set_query_variable(self, query: str, prompt_template: PromptTemplateParser, prompt_inputs: dict) -> dict:
  180. if '#query#' in prompt_template.variable_keys:
  181. if query:
  182. prompt_inputs['#query#'] = query
  183. else:
  184. prompt_inputs['#query#'] = ''
  185. return prompt_inputs
  186. def _set_histories_variable(self, memory: TokenBufferMemory,
  187. memory_config: MemoryConfig,
  188. raw_prompt: str,
  189. role_prefix: MemoryConfig.RolePrefix,
  190. prompt_template: PromptTemplateParser,
  191. prompt_inputs: dict,
  192. model_config: ModelConfigWithCredentialsEntity) -> dict:
  193. if '#histories#' in prompt_template.variable_keys:
  194. if memory:
  195. inputs = {'#histories#': '', **prompt_inputs}
  196. prompt_template = PromptTemplateParser(template=raw_prompt, with_variable_tmpl=self.with_variable_tmpl)
  197. prompt_inputs = {k: inputs[k] for k in prompt_template.variable_keys if k in inputs}
  198. tmp_human_message = UserPromptMessage(
  199. content=prompt_template.format(prompt_inputs)
  200. )
  201. rest_tokens = self._calculate_rest_token([tmp_human_message], model_config)
  202. histories = self._get_history_messages_from_memory(
  203. memory=memory,
  204. memory_config=memory_config,
  205. max_token_limit=rest_tokens,
  206. human_prefix=role_prefix.user,
  207. ai_prefix=role_prefix.assistant
  208. )
  209. prompt_inputs['#histories#'] = histories
  210. else:
  211. prompt_inputs['#histories#'] = ''
  212. return prompt_inputs