| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 | import loggingimport timeimport clickfrom celery import shared_taskfrom werkzeug.exceptions import NotFoundfrom core.rag.datasource.vdb.vector_factory import Vectorfrom core.rag.models.document import Documentfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom models.dataset import Datasetfrom models.model import App, AppAnnotationSetting, MessageAnnotationfrom services.dataset_service import DatasetCollectionBindingService@shared_task(queue='dataset')def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str,                                  user_id: str):    """    Add annotation to index.    :param job_id: job_id    :param content_list: content list    :param tenant_id: tenant id    :param app_id: app id    :param user_id: user_id    """    logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green'))    start_at = time.perf_counter()    indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id))    # get app info    app = db.session.query(App).filter(        App.id == app_id,        App.tenant_id == tenant_id,        App.status == 'normal'    ).first()    if app:        try:            documents = []            for content in content_list:                annotation = MessageAnnotation(                    app_id=app.id,                    content=content['answer'],                    question=content['question'],                    account_id=user_id                )                db.session.add(annotation)                db.session.flush()                document = Document(                    page_content=content['question'],                    metadata={                        "annotation_id": annotation.id,                        "app_id": app_id,                        "doc_id": annotation.id                    }                )                documents.append(document)            # if annotation reply is enabled , batch add annotations' index            app_annotation_setting = db.session.query(AppAnnotationSetting).filter(                AppAnnotationSetting.app_id == app_id            ).first()            if app_annotation_setting:                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type(                    app_annotation_setting.collection_binding_id,                    'annotation'                )                if not dataset_collection_binding:                    raise NotFound("App annotation setting not found")                dataset = Dataset(                    id=app_id,                    tenant_id=tenant_id,                    indexing_technique='high_quality',                    embedding_model_provider=dataset_collection_binding.provider_name,                    embedding_model=dataset_collection_binding.model_name,                    collection_binding_id=dataset_collection_binding.id                )                vector = Vector(dataset, attributes=['doc_id', 'annotation_id', 'app_id'])                vector.create(documents, duplicate_check=True)            db.session.commit()            redis_client.setex(indexing_cache_key, 600, 'completed')            end_at = time.perf_counter()            logging.info(                click.style(                    'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at),                    fg='green'))        except Exception as e:            db.session.rollback()            redis_client.setex(indexing_cache_key, 600, 'error')            indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id))            redis_client.setex(indexing_error_msg_key, 600, str(e))            logging.exception("Build index for batch import annotations failed")
 |