| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171 | import threadingfrom typing import Optionalfrom flask import Flask, current_appfrom core.rag.data_post_processor.data_post_processor import DataPostProcessorfrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.datasource.vdb.vector_factory import Vectorfrom extensions.ext_database import dbfrom models.dataset import Datasetdefault_retrieval_model = {    'search_method': 'semantic_search',    'reranking_enable': False,    'reranking_model': {        'reranking_provider_name': '',        'reranking_model_name': ''    },    'top_k': 2,    'score_threshold_enabled': False}class RetrievalService:    @classmethod    def retrieve(cls, retrival_method: str, dataset_id: str, query: str,                 top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):        dataset = db.session.query(Dataset).filter(            Dataset.id == dataset_id        ).first()        if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:            return []        all_documents = []        threads = []        # retrieval_model source with keyword        if retrival_method == 'keyword_search':            keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={                'flask_app': current_app._get_current_object(),                'dataset_id': dataset_id,                'query': query,                'top_k': top_k,                'all_documents': all_documents            })            threads.append(keyword_thread)            keyword_thread.start()        # retrieval_model source with semantic        if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':            embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={                'flask_app': current_app._get_current_object(),                'dataset_id': dataset_id,                'query': query,                'top_k': top_k,                'score_threshold': score_threshold,                'reranking_model': reranking_model,                'all_documents': all_documents,                'retrival_method': retrival_method            })            threads.append(embedding_thread)            embedding_thread.start()        # retrieval source with full text        if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':            full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={                'flask_app': current_app._get_current_object(),                'dataset_id': dataset_id,                'query': query,                'retrival_method': retrival_method,                'score_threshold': score_threshold,                'top_k': top_k,                'reranking_model': reranking_model,                'all_documents': all_documents            })            threads.append(full_text_index_thread)            full_text_index_thread.start()        for thread in threads:            thread.join()        if retrival_method == 'hybrid_search':            data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)            all_documents = data_post_processor.invoke(                query=query,                documents=all_documents,                score_threshold=score_threshold,                top_n=top_k            )        return all_documents    @classmethod    def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,                       top_k: int, all_documents: list):        with flask_app.app_context():            dataset = db.session.query(Dataset).filter(                Dataset.id == dataset_id            ).first()            keyword = Keyword(                dataset=dataset            )            documents = keyword.search(                query,                top_k=top_k            )            all_documents.extend(documents)    @classmethod    def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,                         top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                         all_documents: list, retrival_method: str):        with flask_app.app_context():            dataset = db.session.query(Dataset).filter(                Dataset.id == dataset_id            ).first()            vector = Vector(                dataset=dataset            )            documents = vector.search_by_vector(                query,                search_type='similarity_score_threshold',                top_k=top_k,                score_threshold=score_threshold,                filter={                    'group_id': [dataset.id]                }            )            if documents:                if reranking_model and retrival_method == 'semantic_search':                    data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)                    all_documents.extend(data_post_processor.invoke(                        query=query,                        documents=documents,                        score_threshold=score_threshold,                        top_n=len(documents)                    ))                else:                    all_documents.extend(documents)    @classmethod    def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,                               top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                               all_documents: list, retrival_method: str):        with flask_app.app_context():            dataset = db.session.query(Dataset).filter(                Dataset.id == dataset_id            ).first()            vector_processor = Vector(                dataset=dataset,            )            documents = vector_processor.search_by_full_text(                query,                top_k=top_k            )            if documents:                if reranking_model and retrival_method == 'full_text_search':                    data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)                    all_documents.extend(data_post_processor.invoke(                        query=query,                        documents=documents,                        score_threshold=score_threshold,                        top_n=len(documents)                    ))                else:                    all_documents.extend(documents)
 |