| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359 | 
							- import json
 
- from collections.abc import Generator, Iterable
 
- from copy import deepcopy
 
- from datetime import UTC, datetime
 
- from mimetypes import guess_type
 
- from typing import Any, Optional, Union, cast
 
- from yarl import URL
 
- from core.app.entities.app_invoke_entities import InvokeFrom
 
- from core.callback_handler.agent_tool_callback_handler import DifyAgentCallbackHandler
 
- from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
 
- from core.file import FileType
 
- from core.file.models import FileTransferMethod
 
- from core.ops.ops_trace_manager import TraceQueueManager
 
- from core.tools.__base.tool import Tool
 
- from core.tools.entities.tool_entities import (
 
-     ToolInvokeMessage,
 
-     ToolInvokeMessageBinary,
 
-     ToolInvokeMeta,
 
-     ToolParameter,
 
- )
 
- from core.tools.errors import (
 
-     ToolEngineInvokeError,
 
-     ToolInvokeError,
 
-     ToolNotFoundError,
 
-     ToolNotSupportedError,
 
-     ToolParameterValidationError,
 
-     ToolProviderCredentialValidationError,
 
-     ToolProviderNotFoundError,
 
- )
 
- from core.tools.utils.message_transformer import ToolFileMessageTransformer
 
- from core.tools.workflow_as_tool.tool import WorkflowTool
 
- from extensions.ext_database import db
 
- from models.enums import CreatedByRole
 
- from models.model import Message, MessageFile
 
- class ToolEngine:
 
-     """
 
-     Tool runtime engine take care of the tool executions.
 
-     """
 
-     @staticmethod
 
-     def agent_invoke(
 
-         tool: Tool,
 
-         tool_parameters: Union[str, dict],
 
-         user_id: str,
 
-         tenant_id: str,
 
-         message: Message,
 
-         invoke_from: InvokeFrom,
 
-         agent_tool_callback: DifyAgentCallbackHandler,
 
-         trace_manager: Optional[TraceQueueManager] = None,
 
-         conversation_id: Optional[str] = None,
 
-         app_id: Optional[str] = None,
 
-         message_id: Optional[str] = None,
 
-     ) -> tuple[str, list[str], ToolInvokeMeta]:
 
-         """
 
-         Agent invokes the tool with the given arguments.
 
-         """
 
-         # check if arguments is a string
 
-         if isinstance(tool_parameters, str):
 
-             # check if this tool has only one parameter
 
-             parameters = [
 
-                 parameter
 
-                 for parameter in tool.get_runtime_parameters()
 
-                 if parameter.form == ToolParameter.ToolParameterForm.LLM
 
-             ]
 
-             if parameters and len(parameters) == 1:
 
-                 tool_parameters = {parameters[0].name: tool_parameters}
 
-             else:
 
-                 try:
 
-                     tool_parameters = json.loads(tool_parameters)
 
-                 except Exception:
 
-                     pass
 
-                 if not isinstance(tool_parameters, dict):
 
-                     raise ValueError(f"tool_parameters should be a dict, but got a string: {tool_parameters}")
 
-         try:
 
-             # hit the callback handler
 
-             agent_tool_callback.on_tool_start(tool_name=tool.entity.identity.name, tool_inputs=tool_parameters)
 
-             messages = ToolEngine._invoke(tool, tool_parameters, user_id, conversation_id, app_id, message_id)
 
-             invocation_meta_dict: dict[str, ToolInvokeMeta] = {}
 
-             def message_callback(
 
-                 invocation_meta_dict: dict, messages: Generator[ToolInvokeMessage | ToolInvokeMeta, None, None]
 
-             ):
 
-                 for message in messages:
 
-                     if isinstance(message, ToolInvokeMeta):
 
-                         invocation_meta_dict["meta"] = message
 
-                     else:
 
-                         yield message
 
-             messages = ToolFileMessageTransformer.transform_tool_invoke_messages(
 
-                 messages=message_callback(invocation_meta_dict, messages),
 
-                 user_id=user_id,
 
-                 tenant_id=tenant_id,
 
-                 conversation_id=message.conversation_id,
 
-             )
 
-             message_list = list(messages)
 
-             # extract binary data from tool invoke message
 
-             binary_files = ToolEngine._extract_tool_response_binary_and_text(message_list)
 
-             # create message file
 
-             message_files = ToolEngine._create_message_files(
 
-                 tool_messages=binary_files, agent_message=message, invoke_from=invoke_from, user_id=user_id
 
-             )
 
-             plain_text = ToolEngine._convert_tool_response_to_str(message_list)
 
-             meta = invocation_meta_dict["meta"]
 
-             # hit the callback handler
 
-             agent_tool_callback.on_tool_end(
 
-                 tool_name=tool.entity.identity.name,
 
-                 tool_inputs=tool_parameters,
 
-                 tool_outputs=plain_text,
 
-                 message_id=message.id,
 
-                 trace_manager=trace_manager,
 
-             )
 
-             # transform tool invoke message to get LLM friendly message
 
-             return plain_text, message_files, meta
 
-         except ToolProviderCredentialValidationError as e:
 
-             error_response = "Please check your tool provider credentials"
 
-             agent_tool_callback.on_tool_error(e)
 
-         except (ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError) as e:
 
-             error_response = f"there is not a tool named {tool.entity.identity.name}"
 
-             agent_tool_callback.on_tool_error(e)
 
-         except ToolParameterValidationError as e:
 
-             error_response = f"tool parameters validation error: {e}, please check your tool parameters"
 
-             agent_tool_callback.on_tool_error(e)
 
-         except ToolInvokeError as e:
 
-             error_response = f"tool invoke error: {e}"
 
-             agent_tool_callback.on_tool_error(e)
 
-         except ToolEngineInvokeError as e:
 
-             meta = e.meta
 
-             error_response = f"tool invoke error: {meta.error}"
 
-             agent_tool_callback.on_tool_error(e)
 
-             return error_response, [], meta
 
-         except Exception as e:
 
-             error_response = f"unknown error: {e}"
 
-             agent_tool_callback.on_tool_error(e)
 
-         return error_response, [], ToolInvokeMeta.error_instance(error_response)
 
-     @staticmethod
 
-     def generic_invoke(
 
-         tool: Tool,
 
-         tool_parameters: dict[str, Any],
 
-         user_id: str,
 
-         workflow_tool_callback: DifyWorkflowCallbackHandler,
 
-         workflow_call_depth: int,
 
-         thread_pool_id: Optional[str] = None,
 
-         conversation_id: Optional[str] = None,
 
-         app_id: Optional[str] = None,
 
-         message_id: Optional[str] = None,
 
-     ) -> Generator[ToolInvokeMessage, None, None]:
 
-         """
 
-         Workflow invokes the tool with the given arguments.
 
-         """
 
-         try:
 
-             # hit the callback handler
 
-             workflow_tool_callback.on_tool_start(tool_name=tool.entity.identity.name, tool_inputs=tool_parameters)
 
-             if isinstance(tool, WorkflowTool):
 
-                 tool.workflow_call_depth = workflow_call_depth + 1
 
-                 tool.thread_pool_id = thread_pool_id
 
-             if tool.runtime and tool.runtime.runtime_parameters:
 
-                 tool_parameters = {**tool.runtime.runtime_parameters, **tool_parameters}
 
-             response = tool.invoke(
 
-                 user_id=user_id,
 
-                 tool_parameters=tool_parameters,
 
-                 conversation_id=conversation_id,
 
-                 app_id=app_id,
 
-                 message_id=message_id,
 
-             )
 
-             # hit the callback handler
 
-             response = workflow_tool_callback.on_tool_execution(
 
-                 tool_name=tool.entity.identity.name,
 
-                 tool_inputs=tool_parameters,
 
-                 tool_outputs=response,
 
-             )
 
-             return response
 
-         except Exception as e:
 
-             workflow_tool_callback.on_tool_error(e)
 
-             raise e
 
-     @staticmethod
 
-     def _invoke(
 
-         tool: Tool,
 
-         tool_parameters: dict,
 
-         user_id: str,
 
-         conversation_id: Optional[str] = None,
 
-         app_id: Optional[str] = None,
 
-         message_id: Optional[str] = None,
 
-     ) -> Generator[ToolInvokeMessage | ToolInvokeMeta, None, None]:
 
-         """
 
-         Invoke the tool with the given arguments.
 
-         """
 
-         started_at = datetime.now(UTC)
 
-         meta = ToolInvokeMeta(
 
-             time_cost=0.0,
 
-             error=None,
 
-             tool_config={
 
-                 "tool_name": tool.entity.identity.name,
 
-                 "tool_provider": tool.entity.identity.provider,
 
-                 "tool_provider_type": tool.tool_provider_type().value,
 
-                 "tool_parameters": deepcopy(tool.runtime.runtime_parameters),
 
-                 "tool_icon": tool.entity.identity.icon,
 
-             },
 
-         )
 
-         try:
 
-             yield from tool.invoke(user_id, tool_parameters, conversation_id, app_id, message_id)
 
-         except Exception as e:
 
-             meta.error = str(e)
 
-             raise ToolEngineInvokeError(meta)
 
-         finally:
 
-             ended_at = datetime.now(UTC)
 
-             meta.time_cost = (ended_at - started_at).total_seconds()
 
-             yield meta
 
-     @staticmethod
 
-     def _convert_tool_response_to_str(tool_response: list[ToolInvokeMessage]) -> str:
 
-         """
 
-         Handle tool response
 
-         """
 
-         result = ""
 
-         for response in tool_response:
 
-             if response.type == ToolInvokeMessage.MessageType.TEXT:
 
-                 result += cast(ToolInvokeMessage.TextMessage, response.message).text
 
-             elif response.type == ToolInvokeMessage.MessageType.LINK:
 
-                 result += (
 
-                     f"result link: {cast(ToolInvokeMessage.TextMessage, response.message).text}."
 
-                     + " please tell user to check it."
 
-                 )
 
-             elif response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
 
-                 result += (
 
-                     "image has been created and sent to user already, "
 
-                     + "you do not need to create it, just tell the user to check it now."
 
-                 )
 
-             elif response.type == ToolInvokeMessage.MessageType.JSON:
 
-                 result = json.dumps(
 
-                     cast(ToolInvokeMessage.JsonMessage, response.message).json_object, ensure_ascii=False
 
-                 )
 
-             else:
 
-                 result += str(response.message)
 
-         return result
 
-     @staticmethod
 
-     def _extract_tool_response_binary_and_text(
 
-         tool_response: list[ToolInvokeMessage],
 
-     ) -> Generator[ToolInvokeMessageBinary, None, None]:
 
-         """
 
-         Extract tool response binary
 
-         """
 
-         for response in tool_response:
 
-             if response.type in {ToolInvokeMessage.MessageType.IMAGE_LINK, ToolInvokeMessage.MessageType.IMAGE}:
 
-                 mimetype = None
 
-                 if not response.meta:
 
-                     raise ValueError("missing meta data")
 
-                 if response.meta.get("mime_type"):
 
-                     mimetype = response.meta.get("mime_type")
 
-                 else:
 
-                     try:
 
-                         url = URL(cast(ToolInvokeMessage.TextMessage, response.message).text)
 
-                         extension = url.suffix
 
-                         guess_type_result, _ = guess_type(f"a{extension}")
 
-                         if guess_type_result:
 
-                             mimetype = guess_type_result
 
-                     except Exception:
 
-                         pass
 
-                 if not mimetype:
 
-                     mimetype = "image/jpeg"
 
-                 yield ToolInvokeMessageBinary(
 
-                     mimetype=response.meta.get("mime_type", "image/jpeg"),
 
-                     url=cast(ToolInvokeMessage.TextMessage, response.message).text,
 
-                 )
 
-             elif response.type == ToolInvokeMessage.MessageType.BLOB:
 
-                 if not response.meta:
 
-                     raise ValueError("missing meta data")
 
-                 yield ToolInvokeMessageBinary(
 
-                     mimetype=response.meta.get("mime_type", "application/octet-stream"),
 
-                     url=cast(ToolInvokeMessage.TextMessage, response.message).text,
 
-                 )
 
-             elif response.type == ToolInvokeMessage.MessageType.LINK:
 
-                 # check if there is a mime type in meta
 
-                 if response.meta and "mime_type" in response.meta:
 
-                     yield ToolInvokeMessageBinary(
 
-                         mimetype=response.meta.get("mime_type", "application/octet-stream")
 
-                         if response.meta
 
-                         else "application/octet-stream",
 
-                         url=cast(ToolInvokeMessage.TextMessage, response.message).text,
 
-                     )
 
-     @staticmethod
 
-     def _create_message_files(
 
-         tool_messages: Iterable[ToolInvokeMessageBinary],
 
-         agent_message: Message,
 
-         invoke_from: InvokeFrom,
 
-         user_id: str,
 
-     ) -> list[str]:
 
-         """
 
-         Create message file
 
-         :param messages: messages
 
-         :return: message file ids
 
-         """
 
-         result = []
 
-         for message in tool_messages:
 
-             if "image" in message.mimetype:
 
-                 file_type = FileType.IMAGE
 
-             elif "video" in message.mimetype:
 
-                 file_type = FileType.VIDEO
 
-             elif "audio" in message.mimetype:
 
-                 file_type = FileType.AUDIO
 
-             elif "text" in message.mimetype or "pdf" in message.mimetype:
 
-                 file_type = FileType.DOCUMENT
 
-             else:
 
-                 file_type = FileType.CUSTOM
 
-             # extract tool file id from url
 
-             tool_file_id = message.url.split("/")[-1].split(".")[0]
 
-             message_file = MessageFile(
 
-                 message_id=agent_message.id,
 
-                 type=file_type,
 
-                 transfer_method=FileTransferMethod.TOOL_FILE,
 
-                 belongs_to="assistant",
 
-                 url=message.url,
 
-                 upload_file_id=tool_file_id,
 
-                 created_by_role=(
 
-                     CreatedByRole.ACCOUNT
 
-                     if invoke_from in {InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER}
 
-                     else CreatedByRole.END_USER
 
-                 ),
 
-                 created_by=user_id,
 
-             )
 
-             db.session.add(message_file)
 
-             db.session.commit()
 
-             db.session.refresh(message_file)
 
-             result.append(message_file.id)
 
-         db.session.close()
 
-         return result
 
 
  |