| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465 | 
							- import json
 
- import logging
 
- from collections.abc import Generator
 
- from copy import deepcopy
 
- from typing import Any, Optional, Union
 
- from core.agent.base_agent_runner import BaseAgentRunner
 
- from core.app.apps.base_app_queue_manager import PublishFrom
 
- from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
 
- from core.file import file_manager
 
- from core.model_runtime.entities import (
 
-     AssistantPromptMessage,
 
-     LLMResult,
 
-     LLMResultChunk,
 
-     LLMResultChunkDelta,
 
-     LLMUsage,
 
-     PromptMessage,
 
-     PromptMessageContent,
 
-     PromptMessageContentType,
 
-     SystemPromptMessage,
 
-     TextPromptMessageContent,
 
-     ToolPromptMessage,
 
-     UserPromptMessage,
 
- )
 
- from core.model_runtime.entities.message_entities import ImagePromptMessageContent
 
- from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
 
- from core.tools.entities.tool_entities import ToolInvokeMeta
 
- from core.tools.tool_engine import ToolEngine
 
- from models.model import Message
 
- logger = logging.getLogger(__name__)
 
- class FunctionCallAgentRunner(BaseAgentRunner):
 
-     def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
 
-         """
 
-         Run FunctionCall agent application
 
-         """
 
-         self.query = query
 
-         app_generate_entity = self.application_generate_entity
 
-         app_config = self.app_config
 
-         assert app_config is not None, "app_config is required"
 
-         assert app_config.agent is not None, "app_config.agent is required"
 
-         # convert tools into ModelRuntime Tool format
 
-         tool_instances, prompt_messages_tools = self._init_prompt_tools()
 
-         assert app_config.agent
 
-         iteration_step = 1
 
-         max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
 
-         # continue to run until there is not any tool call
 
-         function_call_state = True
 
-         llm_usage: dict[str, Optional[LLMUsage]] = {"usage": None}
 
-         final_answer = ""
 
-         # get tracing instance
 
-         trace_manager = app_generate_entity.trace_manager
 
-         def increase_usage(final_llm_usage_dict: dict[str, Optional[LLMUsage]], usage: LLMUsage):
 
-             if not final_llm_usage_dict["usage"]:
 
-                 final_llm_usage_dict["usage"] = usage
 
-             else:
 
-                 llm_usage = final_llm_usage_dict["usage"]
 
-                 llm_usage.prompt_tokens += usage.prompt_tokens
 
-                 llm_usage.completion_tokens += usage.completion_tokens
 
-                 llm_usage.prompt_price += usage.prompt_price
 
-                 llm_usage.completion_price += usage.completion_price
 
-                 llm_usage.total_price += usage.total_price
 
-         model_instance = self.model_instance
 
-         while function_call_state and iteration_step <= max_iteration_steps:
 
-             function_call_state = False
 
-             if iteration_step == max_iteration_steps:
 
-                 # the last iteration, remove all tools
 
-                 prompt_messages_tools = []
 
-             message_file_ids: list[str] = []
 
-             agent_thought = self.create_agent_thought(
 
-                 message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
 
-             )
 
-             # recalc llm max tokens
 
-             prompt_messages = self._organize_prompt_messages()
 
-             self.recalc_llm_max_tokens(self.model_config, prompt_messages)
 
-             # invoke model
 
-             chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
 
-                 prompt_messages=prompt_messages,
 
-                 model_parameters=app_generate_entity.model_conf.parameters,
 
-                 tools=prompt_messages_tools,
 
-                 stop=app_generate_entity.model_conf.stop,
 
-                 stream=self.stream_tool_call,
 
-                 user=self.user_id,
 
-                 callbacks=[],
 
-             )
 
-             tool_calls: list[tuple[str, str, dict[str, Any]]] = []
 
-             # save full response
 
-             response = ""
 
-             # save tool call names and inputs
 
-             tool_call_names = ""
 
-             tool_call_inputs = ""
 
-             current_llm_usage = None
 
-             if isinstance(chunks, Generator):
 
-                 is_first_chunk = True
 
-                 for chunk in chunks:
 
-                     if is_first_chunk:
 
-                         self.queue_manager.publish(
 
-                             QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                         )
 
-                         is_first_chunk = False
 
-                     # check if there is any tool call
 
-                     if self.check_tool_calls(chunk):
 
-                         function_call_state = True
 
-                         tool_calls.extend(self.extract_tool_calls(chunk) or [])
 
-                         tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 
-                         try:
 
-                             tool_call_inputs = json.dumps(
 
-                                 {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 
-                             )
 
-                         except json.JSONDecodeError:
 
-                             # ensure ascii to avoid encoding error
 
-                             tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 
-                     if chunk.delta.message and chunk.delta.message.content:
 
-                         if isinstance(chunk.delta.message.content, list):
 
-                             for content in chunk.delta.message.content:
 
-                                 response += content.data
 
-                         else:
 
-                             response += str(chunk.delta.message.content)
 
-                     if chunk.delta.usage:
 
-                         increase_usage(llm_usage, chunk.delta.usage)
 
-                         current_llm_usage = chunk.delta.usage
 
-                     yield chunk
 
-             else:
 
-                 result = chunks
 
-                 # check if there is any tool call
 
-                 if self.check_blocking_tool_calls(result):
 
-                     function_call_state = True
 
-                     tool_calls.extend(self.extract_blocking_tool_calls(result) or [])
 
-                     tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
 
-                     try:
 
-                         tool_call_inputs = json.dumps(
 
-                             {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
 
-                         )
 
-                     except json.JSONDecodeError:
 
-                         # ensure ascii to avoid encoding error
 
-                         tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})
 
-                 if result.usage:
 
-                     increase_usage(llm_usage, result.usage)
 
-                     current_llm_usage = result.usage
 
-                 if result.message and result.message.content:
 
-                     if isinstance(result.message.content, list):
 
-                         for content in result.message.content:
 
-                             response += content.data
 
-                     else:
 
-                         response += str(result.message.content)
 
-                 if not result.message.content:
 
-                     result.message.content = ""
 
-                 self.queue_manager.publish(
 
-                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                 )
 
-                 yield LLMResultChunk(
 
-                     model=model_instance.model,
 
-                     prompt_messages=result.prompt_messages,
 
-                     system_fingerprint=result.system_fingerprint,
 
-                     delta=LLMResultChunkDelta(
 
-                         index=0,
 
-                         message=result.message,
 
-                         usage=result.usage,
 
-                     ),
 
-                 )
 
-             assistant_message = AssistantPromptMessage(content="", tool_calls=[])
 
-             if tool_calls:
 
-                 assistant_message.tool_calls = [
 
-                     AssistantPromptMessage.ToolCall(
 
-                         id=tool_call[0],
 
-                         type="function",
 
-                         function=AssistantPromptMessage.ToolCall.ToolCallFunction(
 
-                             name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
 
-                         ),
 
-                     )
 
-                     for tool_call in tool_calls
 
-                 ]
 
-             else:
 
-                 assistant_message.content = response
 
-             self._current_thoughts.append(assistant_message)
 
-             # save thought
 
-             self.save_agent_thought(
 
-                 agent_thought=agent_thought,
 
-                 tool_name=tool_call_names,
 
-                 tool_input=tool_call_inputs,
 
-                 thought=response,
 
-                 tool_invoke_meta=None,
 
-                 observation=None,
 
-                 answer=response,
 
-                 messages_ids=[],
 
-                 llm_usage=current_llm_usage,
 
-             )
 
-             self.queue_manager.publish(
 
-                 QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-             )
 
-             final_answer += response + "\n"
 
-             # call tools
 
-             tool_responses = []
 
-             for tool_call_id, tool_call_name, tool_call_args in tool_calls:
 
-                 tool_instance = tool_instances.get(tool_call_name)
 
-                 if not tool_instance:
 
-                     tool_response = {
 
-                         "tool_call_id": tool_call_id,
 
-                         "tool_call_name": tool_call_name,
 
-                         "tool_response": f"there is not a tool named {tool_call_name}",
 
-                         "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
 
-                     }
 
-                 else:
 
-                     # invoke tool
 
-                     tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
 
-                         tool=tool_instance,
 
-                         tool_parameters=tool_call_args,
 
-                         user_id=self.user_id,
 
-                         tenant_id=self.tenant_id,
 
-                         message=self.message,
 
-                         invoke_from=self.application_generate_entity.invoke_from,
 
-                         agent_tool_callback=self.agent_callback,
 
-                         trace_manager=trace_manager,
 
-                         app_id=self.application_generate_entity.app_config.app_id,
 
-                         message_id=self.message.id,
 
-                         conversation_id=self.conversation.id,
 
-                     )
 
-                     # publish files
 
-                     for message_file_id in message_files:
 
-                         # publish message file
 
-                         self.queue_manager.publish(
 
-                             QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
 
-                         )
 
-                         # add message file ids
 
-                         message_file_ids.append(message_file_id)
 
-                     tool_response = {
 
-                         "tool_call_id": tool_call_id,
 
-                         "tool_call_name": tool_call_name,
 
-                         "tool_response": tool_invoke_response,
 
-                         "meta": tool_invoke_meta.to_dict(),
 
-                     }
 
-                 tool_responses.append(tool_response)
 
-                 if tool_response["tool_response"] is not None:
 
-                     self._current_thoughts.append(
 
-                         ToolPromptMessage(
 
-                             content=str(tool_response["tool_response"]),
 
-                             tool_call_id=tool_call_id,
 
-                             name=tool_call_name,
 
-                         )
 
-                     )
 
-             if len(tool_responses) > 0:
 
-                 # save agent thought
 
-                 self.save_agent_thought(
 
-                     agent_thought=agent_thought,
 
-                     tool_name="",
 
-                     tool_input="",
 
-                     thought="",
 
-                     tool_invoke_meta={
 
-                         tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
 
-                     },
 
-                     observation={
 
-                         tool_response["tool_call_name"]: tool_response["tool_response"]
 
-                         for tool_response in tool_responses
 
-                     },
 
-                     answer="",
 
-                     messages_ids=message_file_ids,
 
-                 )
 
-                 self.queue_manager.publish(
 
-                     QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
 
-                 )
 
-             # update prompt tool
 
-             for prompt_tool in prompt_messages_tools:
 
-                 self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
 
-             iteration_step += 1
 
-         # publish end event
 
-         self.queue_manager.publish(
 
-             QueueMessageEndEvent(
 
-                 llm_result=LLMResult(
 
-                     model=model_instance.model,
 
-                     prompt_messages=prompt_messages,
 
-                     message=AssistantPromptMessage(content=final_answer),
 
-                     usage=llm_usage["usage"] or LLMUsage.empty_usage(),
 
-                     system_fingerprint="",
 
-                 )
 
-             ),
 
-             PublishFrom.APPLICATION_MANAGER,
 
-         )
 
-     def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
 
-         """
 
-         Check if there is any tool call in llm result chunk
 
-         """
 
-         if llm_result_chunk.delta.message.tool_calls:
 
-             return True
 
-         return False
 
-     def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
 
-         """
 
-         Check if there is any blocking tool call in llm result
 
-         """
 
-         if llm_result.message.tool_calls:
 
-             return True
 
-         return False
 
-     def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> list[tuple[str, str, dict[str, Any]]]:
 
-         """
 
-         Extract tool calls from llm result chunk
 
-         Returns:
 
-             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 
-         """
 
-         tool_calls = []
 
-         for prompt_message in llm_result_chunk.delta.message.tool_calls:
 
-             args = {}
 
-             if prompt_message.function.arguments != "":
 
-                 args = json.loads(prompt_message.function.arguments)
 
-             tool_calls.append(
 
-                 (
 
-                     prompt_message.id,
 
-                     prompt_message.function.name,
 
-                     args,
 
-                 )
 
-             )
 
-         return tool_calls
 
-     def extract_blocking_tool_calls(self, llm_result: LLMResult) -> list[tuple[str, str, dict[str, Any]]]:
 
-         """
 
-         Extract blocking tool calls from llm result
 
-         Returns:
 
-             List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
 
-         """
 
-         tool_calls = []
 
-         for prompt_message in llm_result.message.tool_calls:
 
-             args = {}
 
-             if prompt_message.function.arguments != "":
 
-                 args = json.loads(prompt_message.function.arguments)
 
-             tool_calls.append(
 
-                 (
 
-                     prompt_message.id,
 
-                     prompt_message.function.name,
 
-                     args,
 
-                 )
 
-             )
 
-         return tool_calls
 
-     def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 
-         """
 
-         Initialize system message
 
-         """
 
-         if not prompt_messages and prompt_template:
 
-             return [
 
-                 SystemPromptMessage(content=prompt_template),
 
-             ]
 
-         if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
 
-             prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
 
-         return prompt_messages or []
 
-     def _organize_user_query(self, query: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 
-         """
 
-         Organize user query
 
-         """
 
-         if self.files:
 
-             prompt_message_contents: list[PromptMessageContent] = []
 
-             prompt_message_contents.append(TextPromptMessageContent(data=query))
 
-             # get image detail config
 
-             image_detail_config = (
 
-                 self.application_generate_entity.file_upload_config.image_config.detail
 
-                 if (
 
-                     self.application_generate_entity.file_upload_config
 
-                     and self.application_generate_entity.file_upload_config.image_config
 
-                 )
 
-                 else None
 
-             )
 
-             image_detail_config = image_detail_config or ImagePromptMessageContent.DETAIL.LOW
 
-             for file in self.files:
 
-                 prompt_message_contents.append(
 
-                     file_manager.to_prompt_message_content(
 
-                         file,
 
-                         image_detail_config=image_detail_config,
 
-                     )
 
-                 )
 
-             prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
 
-         else:
 
-             prompt_messages.append(UserPromptMessage(content=query))
 
-         return prompt_messages
 
-     def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
 
-         """
 
-         As for now, gpt supports both fc and vision at the first iteration.
 
-         We need to remove the image messages from the prompt messages at the first iteration.
 
-         """
 
-         prompt_messages = deepcopy(prompt_messages)
 
-         for prompt_message in prompt_messages:
 
-             if isinstance(prompt_message, UserPromptMessage):
 
-                 if isinstance(prompt_message.content, list):
 
-                     prompt_message.content = "\n".join(
 
-                         [
 
-                             content.data
 
-                             if content.type == PromptMessageContentType.TEXT
 
-                             else "[image]"
 
-                             if content.type == PromptMessageContentType.IMAGE
 
-                             else "[file]"
 
-                             for content in prompt_message.content
 
-                         ]
 
-                     )
 
-         return prompt_messages
 
-     def _organize_prompt_messages(self):
 
-         prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
 
-         self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
 
-         query_prompt_messages = self._organize_user_query(self.query or "", [])
 
-         self.history_prompt_messages = AgentHistoryPromptTransform(
 
-             model_config=self.model_config,
 
-             prompt_messages=[*query_prompt_messages, *self._current_thoughts],
 
-             history_messages=self.history_prompt_messages,
 
-             memory=self.memory,
 
-         ).get_prompt()
 
-         prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
 
-         if len(self._current_thoughts) != 0:
 
-             # clear messages after the first iteration
 
-             prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
 
-         return prompt_messages
 
 
  |