123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250 |
- import copy
- import datetime
- import json
- import logging
- import random
- import time
- import uuid
- from collections import Counter
- from typing import Any, Optional
- from flask_login import current_user # type: ignore
- from sqlalchemy import func
- from sqlalchemy.orm import Session
- from werkzeug.exceptions import NotFound
- from configs import dify_config
- from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from core.plugin.entities.plugin import ModelProviderID
- from core.rag.index_processor.constant.built_in_field import BuiltInField
- from core.rag.index_processor.constant.index_type import IndexType
- from core.rag.retrieval.retrieval_methods import RetrievalMethod
- from events.dataset_event import dataset_was_deleted
- from events.document_event import document_was_deleted
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from libs import helper
- from models.account import Account, TenantAccountRole
- from models.dataset import (
- AppDatasetJoin,
- ChildChunk,
- Dataset,
- DatasetAutoDisableLog,
- DatasetCollectionBinding,
- DatasetPermission,
- DatasetPermissionEnum,
- DatasetProcessRule,
- DatasetQuery,
- Document,
- DocumentSegment,
- ExternalKnowledgeBindings,
- )
- from models.model import UploadFile
- from models.source import DataSourceOauthBinding
- from services.entities.knowledge_entities.knowledge_entities import (
- ChildChunkUpdateArgs,
- KnowledgeConfig,
- RerankingModel,
- RetrievalModel,
- SegmentUpdateArgs,
- )
- from services.errors.account import InvalidActionError, NoPermissionError
- from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
- from services.errors.dataset import DatasetNameDuplicateError
- from services.errors.document import DocumentIndexingError
- from services.errors.file import FileNotExistsError
- from services.external_knowledge_service import ExternalDatasetService
- from services.feature_service import FeatureModel, FeatureService
- from services.tag_service import TagService
- from services.vector_service import VectorService
- from tasks.batch_clean_document_task import batch_clean_document_task
- from tasks.clean_notion_document_task import clean_notion_document_task
- from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
- from tasks.delete_segment_from_index_task import delete_segment_from_index_task
- from tasks.disable_segment_from_index_task import disable_segment_from_index_task
- from tasks.disable_segments_from_index_task import disable_segments_from_index_task
- from tasks.document_indexing_task import document_indexing_task
- from tasks.document_indexing_update_task import document_indexing_update_task
- from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
- from tasks.enable_segments_to_index_task import enable_segments_to_index_task
- from tasks.recover_document_indexing_task import recover_document_indexing_task
- from tasks.retry_document_indexing_task import retry_document_indexing_task
- from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
- class DatasetService:
- @staticmethod
- def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
- query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
- if user:
- # get permitted dataset ids
- dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
- permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
- if user.current_role == TenantAccountRole.DATASET_OPERATOR:
- # only show datasets that the user has permission to access
- if permitted_dataset_ids:
- query = query.filter(Dataset.id.in_(permitted_dataset_ids))
- else:
- return [], 0
- else:
- if user.current_role != TenantAccountRole.OWNER or not include_all:
- # show all datasets that the user has permission to access
- if permitted_dataset_ids:
- query = query.filter(
- db.or_(
- Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
- db.and_(
- Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
- ),
- db.and_(
- Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
- Dataset.id.in_(permitted_dataset_ids),
- ),
- )
- )
- else:
- query = query.filter(
- db.or_(
- Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
- db.and_(
- Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
- ),
- )
- )
- else:
- # if no user, only show datasets that are shared with all team members
- query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
- if search:
- query = query.filter(Dataset.name.ilike(f"%{search}%"))
- if tag_ids:
- target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
- if target_ids:
- query = query.filter(Dataset.id.in_(target_ids))
- else:
- return [], 0
- datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
- return datasets.items, datasets.total
- @staticmethod
- def get_process_rules(dataset_id):
- # get the latest process rule
- dataset_process_rule = (
- db.session.query(DatasetProcessRule)
- .filter(DatasetProcessRule.dataset_id == dataset_id)
- .order_by(DatasetProcessRule.created_at.desc())
- .limit(1)
- .one_or_none()
- )
- if dataset_process_rule:
- mode = dataset_process_rule.mode
- rules = dataset_process_rule.rules_dict
- else:
- mode = DocumentService.DEFAULT_RULES["mode"]
- rules = DocumentService.DEFAULT_RULES["rules"]
- return {"mode": mode, "rules": rules}
- @staticmethod
- def get_datasets_by_ids(ids, tenant_id):
- datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
- page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
- )
- return datasets.items, datasets.total
- @staticmethod
- def create_empty_dataset(
- tenant_id: str,
- name: str,
- description: Optional[str],
- indexing_technique: Optional[str],
- account: Account,
- permission: Optional[str] = None,
- provider: str = "vendor",
- external_knowledge_api_id: Optional[str] = None,
- external_knowledge_id: Optional[str] = None,
- ):
- # check if dataset name already exists
- if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
- raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
- embedding_model = None
- if indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
- )
- dataset = Dataset(name=name, indexing_technique=indexing_technique)
- # dataset = Dataset(name=name, provider=provider, config=config)
- dataset.description = description
- dataset.created_by = account.id
- dataset.updated_by = account.id
- dataset.tenant_id = tenant_id
- dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
- dataset.embedding_model = embedding_model.model if embedding_model else None
- dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
- dataset.provider = provider
- db.session.add(dataset)
- db.session.flush()
- if provider == "external" and external_knowledge_api_id:
- external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
- if not external_knowledge_api:
- raise ValueError("External API template not found.")
- external_knowledge_binding = ExternalKnowledgeBindings(
- tenant_id=tenant_id,
- dataset_id=dataset.id,
- external_knowledge_api_id=external_knowledge_api_id,
- external_knowledge_id=external_knowledge_id,
- created_by=account.id,
- )
- db.session.add(external_knowledge_binding)
- db.session.commit()
- return dataset
- @staticmethod
- def get_dataset(dataset_id) -> Optional[Dataset]:
- dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
- return dataset
- @staticmethod
- def check_dataset_model_setting(dataset):
- if dataset.indexing_technique == "high_quality":
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
- @staticmethod
- def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
- try:
- model_manager = ModelManager()
- model_manager.get_model_instance(
- tenant_id=tenant_id,
- provider=embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=embedding_model,
- )
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- @staticmethod
- def update_dataset(dataset_id, data, user):
- dataset = DatasetService.get_dataset(dataset_id)
- if not dataset:
- raise ValueError("Dataset not found")
- DatasetService.check_dataset_permission(dataset, user)
- if dataset.provider == "external":
- external_retrieval_model = data.get("external_retrieval_model", None)
- if external_retrieval_model:
- dataset.retrieval_model = external_retrieval_model
- dataset.name = data.get("name", dataset.name)
- dataset.description = data.get("description", "")
- permission = data.get("permission")
- if permission:
- dataset.permission = permission
- external_knowledge_id = data.get("external_knowledge_id", None)
- db.session.add(dataset)
- if not external_knowledge_id:
- raise ValueError("External knowledge id is required.")
- external_knowledge_api_id = data.get("external_knowledge_api_id", None)
- if not external_knowledge_api_id:
- raise ValueError("External knowledge api id is required.")
- with Session(db.engine) as session:
- external_knowledge_binding = (
- session.query(ExternalKnowledgeBindings).filter_by(dataset_id=dataset_id).first()
- )
- if not external_knowledge_binding:
- raise ValueError("External knowledge binding not found.")
- if (
- external_knowledge_binding.external_knowledge_id != external_knowledge_id
- or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
- ):
- external_knowledge_binding.external_knowledge_id = external_knowledge_id
- external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
- db.session.add(external_knowledge_binding)
- db.session.commit()
- else:
- data.pop("partial_member_list", None)
- data.pop("external_knowledge_api_id", None)
- data.pop("external_knowledge_id", None)
- data.pop("external_retrieval_model", None)
- filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
- action = None
- if dataset.indexing_technique != data["indexing_technique"]:
- # if update indexing_technique
- if data["indexing_technique"] == "economy":
- action = "remove"
- filtered_data["embedding_model"] = None
- filtered_data["embedding_model_provider"] = None
- filtered_data["collection_binding_id"] = None
- elif data["indexing_technique"] == "high_quality":
- action = "add"
- # get embedding model setting
- try:
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=data["embedding_model_provider"],
- model_type=ModelType.TEXT_EMBEDDING,
- model=data["embedding_model"],
- )
- filtered_data["embedding_model"] = embedding_model.model
- filtered_data["embedding_model_provider"] = embedding_model.provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider, embedding_model.model
- )
- filtered_data["collection_binding_id"] = dataset_collection_binding.id
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- else:
- # add default plugin id to both setting sets, to make sure the plugin model provider is consistent
- # Skip embedding model checks if not provided in the update request
- if (
- "embedding_model_provider" not in data
- or "embedding_model" not in data
- or not data.get("embedding_model_provider")
- or not data.get("embedding_model")
- ):
- # If the dataset already has embedding model settings, use those
- if dataset.embedding_model_provider and dataset.embedding_model:
- # Keep existing values
- filtered_data["embedding_model_provider"] = dataset.embedding_model_provider
- filtered_data["embedding_model"] = dataset.embedding_model
- # If collection_binding_id exists, keep it too
- if dataset.collection_binding_id:
- filtered_data["collection_binding_id"] = dataset.collection_binding_id
- # Otherwise, don't try to update embedding model settings at all
- # Remove these fields from filtered_data if they exist but are None/empty
- if "embedding_model_provider" in filtered_data and not filtered_data["embedding_model_provider"]:
- del filtered_data["embedding_model_provider"]
- if "embedding_model" in filtered_data and not filtered_data["embedding_model"]:
- del filtered_data["embedding_model"]
- else:
- skip_embedding_update = False
- try:
- # Handle existing model provider
- plugin_model_provider = dataset.embedding_model_provider
- plugin_model_provider_str = None
- if plugin_model_provider:
- plugin_model_provider_str = str(ModelProviderID(plugin_model_provider))
- # Handle new model provider from request
- new_plugin_model_provider = data["embedding_model_provider"]
- new_plugin_model_provider_str = None
- if new_plugin_model_provider:
- new_plugin_model_provider_str = str(ModelProviderID(new_plugin_model_provider))
- # Only update embedding model if both values are provided and different from current
- if (
- plugin_model_provider_str != new_plugin_model_provider_str
- or data["embedding_model"] != dataset.embedding_model
- ):
- action = "update"
- model_manager = ModelManager()
- try:
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=data["embedding_model_provider"],
- model_type=ModelType.TEXT_EMBEDDING,
- model=data["embedding_model"],
- )
- except ProviderTokenNotInitError:
- # If we can't get the embedding model, skip updating it
- # and keep the existing settings if available
- if dataset.embedding_model_provider and dataset.embedding_model:
- filtered_data["embedding_model_provider"] = dataset.embedding_model_provider
- filtered_data["embedding_model"] = dataset.embedding_model
- if dataset.collection_binding_id:
- filtered_data["collection_binding_id"] = dataset.collection_binding_id
- # Skip the rest of the embedding model update
- skip_embedding_update = True
- if not skip_embedding_update:
- filtered_data["embedding_model"] = embedding_model.model
- filtered_data["embedding_model_provider"] = embedding_model.provider
- dataset_collection_binding = (
- DatasetCollectionBindingService.get_dataset_collection_binding(
- embedding_model.provider, embedding_model.model
- )
- )
- filtered_data["collection_binding_id"] = dataset_collection_binding.id
- except LLMBadRequestError:
- raise ValueError(
- "No Embedding Model available. Please configure a valid provider "
- "in the Settings -> Model Provider."
- )
- except ProviderTokenNotInitError as ex:
- raise ValueError(ex.description)
- filtered_data["updated_by"] = user.id
- filtered_data["updated_at"] = datetime.datetime.now()
- # update Retrieval model
- filtered_data["retrieval_model"] = data["retrieval_model"]
- dataset.query.filter_by(id=dataset_id).update(filtered_data)
- db.session.commit()
- if action:
- deal_dataset_vector_index_task.delay(dataset_id, action)
- return dataset
- @staticmethod
- def delete_dataset(dataset_id, user):
- dataset = DatasetService.get_dataset(dataset_id)
- if dataset is None:
- return False
- DatasetService.check_dataset_permission(dataset, user)
- dataset_was_deleted.send(dataset)
- db.session.delete(dataset)
- db.session.commit()
- return True
- @staticmethod
- def dataset_use_check(dataset_id) -> bool:
- count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
- if count > 0:
- return True
- return False
- @staticmethod
- def check_dataset_permission(dataset, user):
- if dataset.tenant_id != user.current_tenant_id:
- logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
- raise NoPermissionError("You do not have permission to access this dataset.")
- if user.current_role != TenantAccountRole.OWNER:
- if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
- logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
- raise NoPermissionError("You do not have permission to access this dataset.")
- if dataset.permission == "partial_members":
- user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
- if (
- not user_permission
- and dataset.tenant_id != user.current_tenant_id
- and dataset.created_by != user.id
- ):
- logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
- raise NoPermissionError("You do not have permission to access this dataset.")
- @staticmethod
- def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
- if not dataset:
- raise ValueError("Dataset not found")
- if not user:
- raise ValueError("User not found")
- if user.current_role != TenantAccountRole.OWNER:
- if dataset.permission == DatasetPermissionEnum.ONLY_ME:
- if dataset.created_by != user.id:
- raise NoPermissionError("You do not have permission to access this dataset.")
- elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
- if not any(
- dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
- ):
- raise NoPermissionError("You do not have permission to access this dataset.")
- @staticmethod
- def get_dataset_queries(dataset_id: str, page: int, per_page: int):
- dataset_queries = (
- DatasetQuery.query.filter_by(dataset_id=dataset_id)
- .order_by(db.desc(DatasetQuery.created_at))
- .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
- )
- return dataset_queries.items, dataset_queries.total
- @staticmethod
- def get_related_apps(dataset_id: str):
- return (
- AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
- .order_by(db.desc(AppDatasetJoin.created_at))
- .all()
- )
- @staticmethod
- def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
- features = FeatureService.get_features(current_user.current_tenant_id)
- if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
- return {
- "document_ids": [],
- "count": 0,
- }
- # get recent 30 days auto disable logs
- start_date = datetime.datetime.now() - datetime.timedelta(days=30)
- dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
- DatasetAutoDisableLog.dataset_id == dataset_id,
- DatasetAutoDisableLog.created_at >= start_date,
- ).all()
- if dataset_auto_disable_logs:
- return {
- "document_ids": [log.document_id for log in dataset_auto_disable_logs],
- "count": len(dataset_auto_disable_logs),
- }
- return {
- "document_ids": [],
- "count": 0,
- }
- class DocumentService:
- DEFAULT_RULES: dict[str, Any] = {
- "mode": "custom",
- "rules": {
- "pre_processing_rules": [
- {"id": "remove_extra_spaces", "enabled": True},
- {"id": "remove_urls_emails", "enabled": False},
- ],
- "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
- },
- "limits": {
- "indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
- },
- }
- DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
- "book": {
- "title": str,
- "language": str,
- "author": str,
- "publisher": str,
- "publication_date": str,
- "isbn": str,
- "category": str,
- },
- "web_page": {
- "title": str,
- "url": str,
- "language": str,
- "publish_date": str,
- "author/publisher": str,
- "topic/keywords": str,
- "description": str,
- },
- "paper": {
- "title": str,
- "language": str,
- "author": str,
- "publish_date": str,
- "journal/conference_name": str,
- "volume/issue/page_numbers": str,
- "doi": str,
- "topic/keywords": str,
- "abstract": str,
- },
- "social_media_post": {
- "platform": str,
- "author/username": str,
- "publish_date": str,
- "post_url": str,
- "topic/tags": str,
- },
- "wikipedia_entry": {
- "title": str,
- "language": str,
- "web_page_url": str,
- "last_edit_date": str,
- "editor/contributor": str,
- "summary/introduction": str,
- },
- "personal_document": {
- "title": str,
- "author": str,
- "creation_date": str,
- "last_modified_date": str,
- "document_type": str,
- "tags/category": str,
- },
- "business_document": {
- "title": str,
- "author": str,
- "creation_date": str,
- "last_modified_date": str,
- "document_type": str,
- "department/team": str,
- },
- "im_chat_log": {
- "chat_platform": str,
- "chat_participants/group_name": str,
- "start_date": str,
- "end_date": str,
- "summary": str,
- },
- "synced_from_notion": {
- "title": str,
- "language": str,
- "author/creator": str,
- "creation_date": str,
- "last_modified_date": str,
- "notion_page_link": str,
- "category/tags": str,
- "description": str,
- },
- "synced_from_github": {
- "repository_name": str,
- "repository_description": str,
- "repository_owner/organization": str,
- "code_filename": str,
- "code_file_path": str,
- "programming_language": str,
- "github_link": str,
- "open_source_license": str,
- "commit_date": str,
- "commit_author": str,
- },
- "others": dict,
- }
- @staticmethod
- def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
- if document_id:
- document = (
- db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
- )
- return document
- else:
- return None
- @staticmethod
- def get_document_by_id(document_id: str) -> Optional[Document]:
- document = db.session.query(Document).filter(Document.id == document_id).first()
- return document
- @staticmethod
- def get_document_by_ids(document_ids: list[str]) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(
- Document.id.in_(document_ids),
- Document.enabled == True,
- Document.indexing_status == "completed",
- Document.archived == False,
- )
- .all()
- )
- return documents
- @staticmethod
- def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(
- Document.dataset_id == dataset_id,
- Document.enabled == True,
- )
- .all()
- )
- return documents
- @staticmethod
- def get_working_documents_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(
- Document.dataset_id == dataset_id,
- Document.enabled == True,
- Document.indexing_status == "completed",
- Document.archived == False,
- )
- .all()
- )
- return documents
- @staticmethod
- def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
- .all()
- )
- return documents
- @staticmethod
- def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
- documents = (
- db.session.query(Document)
- .filter(
- Document.batch == batch,
- Document.dataset_id == dataset_id,
- Document.tenant_id == current_user.current_tenant_id,
- )
- .all()
- )
- return documents
- @staticmethod
- def get_document_file_detail(file_id: str):
- file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
- return file_detail
- @staticmethod
- def check_archived(document):
- if document.archived:
- return True
- else:
- return False
- @staticmethod
- def delete_document(document):
- # trigger document_was_deleted signal
- file_id = None
- if document.data_source_type == "upload_file":
- if document.data_source_info:
- data_source_info = document.data_source_info_dict
- if data_source_info and "upload_file_id" in data_source_info:
- file_id = data_source_info["upload_file_id"]
- document_was_deleted.send(
- document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
- )
- db.session.delete(document)
- db.session.commit()
- @staticmethod
- def delete_documents(dataset: Dataset, document_ids: list[str]):
- documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
- file_ids = [
- document.data_source_info_dict["upload_file_id"]
- for document in documents
- if document.data_source_type == "upload_file"
- ]
- batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)
- for document in documents:
- db.session.delete(document)
- db.session.commit()
- @staticmethod
- def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
- dataset = DatasetService.get_dataset(dataset_id)
- if not dataset:
- raise ValueError("Dataset not found.")
- document = DocumentService.get_document(dataset_id, document_id)
- if not document:
- raise ValueError("Document not found.")
- if document.tenant_id != current_user.current_tenant_id:
- raise ValueError("No permission.")
- if dataset.built_in_field_enabled:
- if document.doc_metadata:
- doc_metadata = copy.deepcopy(document.doc_metadata)
- doc_metadata[BuiltInField.document_name.value] = name
- document.doc_metadata = doc_metadata
- document.name = name
- db.session.add(document)
- db.session.commit()
- return document
- @staticmethod
- def pause_document(document):
- if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
- raise DocumentIndexingError()
- # update document to be paused
- document.is_paused = True
- document.paused_by = current_user.id
- document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- db.session.add(document)
- db.session.commit()
- # set document paused flag
- indexing_cache_key = "document_{}_is_paused".format(document.id)
- redis_client.setnx(indexing_cache_key, "True")
- @staticmethod
- def recover_document(document):
- if not document.is_paused:
- raise DocumentIndexingError()
- # update document to be recover
- document.is_paused = False
- document.paused_by = None
- document.paused_at = None
- db.session.add(document)
- db.session.commit()
- # delete paused flag
- indexing_cache_key = "document_{}_is_paused".format(document.id)
- redis_client.delete(indexing_cache_key)
- # trigger async task
- recover_document_indexing_task.delay(document.dataset_id, document.id)
- @staticmethod
- def retry_document(dataset_id: str, documents: list[Document]):
- for document in documents:
- # add retry flag
- retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
- cache_result = redis_client.get(retry_indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Document is being retried, please try again later")
- # retry document indexing
- document.indexing_status = "waiting"
- db.session.add(document)
- db.session.commit()
- redis_client.setex(retry_indexing_cache_key, 600, 1)
- # trigger async task
- document_ids = [document.id for document in documents]
- retry_document_indexing_task.delay(dataset_id, document_ids)
- @staticmethod
- def sync_website_document(dataset_id: str, document: Document):
- # add sync flag
- sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
- cache_result = redis_client.get(sync_indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Document is being synced, please try again later")
- # sync document indexing
- document.indexing_status = "waiting"
- data_source_info = document.data_source_info_dict
- data_source_info["mode"] = "scrape"
- document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
- db.session.add(document)
- db.session.commit()
- redis_client.setex(sync_indexing_cache_key, 600, 1)
- sync_website_document_indexing_task.delay(dataset_id, document.id)
- @staticmethod
- def get_documents_position(dataset_id):
- document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
- if document:
- return document.position + 1
- else:
- return 1
- @staticmethod
- def save_document_with_dataset_id(
- dataset: Dataset,
- knowledge_config: KnowledgeConfig,
- account: Account | Any,
- dataset_process_rule: Optional[DatasetProcessRule] = None,
- created_from: str = "web",
- ):
- # check document limit
- features = FeatureService.get_features(current_user.current_tenant_id)
- if features.billing.enabled:
- if not knowledge_config.original_document_id:
- count = 0
- if knowledge_config.data_source:
- if knowledge_config.data_source.info_list.data_source_type == "upload_file":
- upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
- count = len(upload_file_list)
- elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
- notion_info_list = knowledge_config.data_source.info_list.notion_info_list
- for notion_info in notion_info_list: # type: ignore
- count = count + len(notion_info.pages)
- elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
- website_info = knowledge_config.data_source.info_list.website_info_list
- count = len(website_info.urls) # type: ignore
- batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- DocumentService.check_documents_upload_quota(count, features)
- # if dataset is empty, update dataset data_source_type
- if not dataset.data_source_type:
- dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
- if not dataset.indexing_technique:
- if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
- raise ValueError("Indexing technique is invalid")
- dataset.indexing_technique = knowledge_config.indexing_technique
- if knowledge_config.indexing_technique == "high_quality":
- model_manager = ModelManager()
- if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
- dataset_embedding_model = knowledge_config.embedding_model
- dataset_embedding_model_provider = knowledge_config.embedding_model_provider
- else:
- embedding_model = model_manager.get_default_model_instance(
- tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
- )
- dataset_embedding_model = embedding_model.model
- dataset_embedding_model_provider = embedding_model.provider
- dataset.embedding_model = dataset_embedding_model
- dataset.embedding_model_provider = dataset_embedding_model_provider
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- dataset_embedding_model_provider, dataset_embedding_model
- )
- dataset.collection_binding_id = dataset_collection_binding.id
- if not dataset.retrieval_model:
- default_retrieval_model = {
- "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
- "reranking_enable": False,
- "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
- "top_k": 2,
- "score_threshold_enabled": False,
- }
- dataset.retrieval_model = (
- knowledge_config.retrieval_model.model_dump()
- if knowledge_config.retrieval_model
- else default_retrieval_model
- ) # type: ignore
- documents = []
- if knowledge_config.original_document_id:
- document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
- documents.append(document)
- batch = document.batch
- else:
- batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
- # save process rule
- if not dataset_process_rule:
- process_rule = knowledge_config.process_rule
- if process_rule:
- if process_rule.mode in ("custom", "hierarchical"):
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
- created_by=account.id,
- )
- elif process_rule.mode == "automatic":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
- created_by=account.id,
- )
- else:
- logging.warn(
- f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
- )
- return
- db.session.add(dataset_process_rule)
- db.session.commit()
- lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
- with redis_client.lock(lock_name, timeout=600):
- position = DocumentService.get_documents_position(dataset.id)
- document_ids = []
- duplicate_document_ids = []
- if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
- upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
- for file_id in upload_file_list:
- file = (
- db.session.query(UploadFile)
- .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
- .first()
- )
- # raise error if file not found
- if not file:
- raise FileNotExistsError()
- file_name = file.name
- data_source_info = {
- "upload_file_id": file_id,
- }
- # check duplicate
- if knowledge_config.duplicate:
- document = Document.query.filter_by(
- dataset_id=dataset.id,
- tenant_id=current_user.current_tenant_id,
- data_source_type="upload_file",
- enabled=True,
- name=file_name,
- ).first()
- if document:
- document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
- document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- document.created_from = created_from
- document.doc_form = knowledge_config.doc_form
- document.doc_language = knowledge_config.doc_language
- document.data_source_info = json.dumps(data_source_info)
- document.batch = batch
- document.indexing_status = "waiting"
- db.session.add(document)
- documents.append(document)
- duplicate_document_ids.append(document.id)
- continue
- document = DocumentService.build_document(
- dataset,
- dataset_process_rule.id, # type: ignore
- knowledge_config.data_source.info_list.data_source_type, # type: ignore
- knowledge_config.doc_form,
- knowledge_config.doc_language,
- data_source_info,
- created_from,
- position,
- account,
- file_name,
- batch,
- )
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
- notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
- if not notion_info_list:
- raise ValueError("No notion info list found.")
- exist_page_ids = []
- exist_document = {}
- documents = Document.query.filter_by(
- dataset_id=dataset.id,
- tenant_id=current_user.current_tenant_id,
- data_source_type="notion_import",
- enabled=True,
- ).all()
- if documents:
- for document in documents:
- data_source_info = json.loads(document.data_source_info)
- exist_page_ids.append(data_source_info["notion_page_id"])
- exist_document[data_source_info["notion_page_id"]] = document.id
- for notion_info in notion_info_list:
- workspace_id = notion_info.workspace_id
- data_source_binding = DataSourceOauthBinding.query.filter(
- db.and_(
- DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
- DataSourceOauthBinding.provider == "notion",
- DataSourceOauthBinding.disabled == False,
- DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
- )
- ).first()
- if not data_source_binding:
- raise ValueError("Data source binding not found.")
- for page in notion_info.pages:
- if page.page_id not in exist_page_ids:
- data_source_info = {
- "notion_workspace_id": workspace_id,
- "notion_page_id": page.page_id,
- "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
- "type": page.type,
- }
- # Truncate page name to 255 characters to prevent DB field length errors
- truncated_page_name = page.page_name[:255] if page.page_name else "nopagename"
- document = DocumentService.build_document(
- dataset,
- dataset_process_rule.id, # type: ignore
- knowledge_config.data_source.info_list.data_source_type, # type: ignore
- knowledge_config.doc_form,
- knowledge_config.doc_language,
- data_source_info,
- created_from,
- position,
- account,
- truncated_page_name,
- batch,
- )
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- else:
- exist_document.pop(page.page_id)
- # delete not selected documents
- if len(exist_document) > 0:
- clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
- elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
- website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
- if not website_info:
- raise ValueError("No website info list found.")
- urls = website_info.urls
- for url in urls:
- data_source_info = {
- "url": url,
- "provider": website_info.provider,
- "job_id": website_info.job_id,
- "only_main_content": website_info.only_main_content,
- "mode": "crawl",
- }
- if len(url) > 255:
- document_name = url[:200] + "..."
- else:
- document_name = url
- document = DocumentService.build_document(
- dataset,
- dataset_process_rule.id, # type: ignore
- knowledge_config.data_source.info_list.data_source_type, # type: ignore
- knowledge_config.doc_form,
- knowledge_config.doc_language,
- data_source_info,
- created_from,
- position,
- account,
- document_name,
- batch,
- )
- db.session.add(document)
- db.session.flush()
- document_ids.append(document.id)
- documents.append(document)
- position += 1
- db.session.commit()
- # trigger async task
- if document_ids:
- document_indexing_task.delay(dataset.id, document_ids)
- if duplicate_document_ids:
- duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
- return documents, batch
- @staticmethod
- def check_documents_upload_quota(count: int, features: FeatureModel):
- can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
- if count > can_upload_size:
- raise ValueError(
- f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
- )
- @staticmethod
- def build_document(
- dataset: Dataset,
- process_rule_id: str,
- data_source_type: str,
- document_form: str,
- document_language: str,
- data_source_info: dict,
- created_from: str,
- position: int,
- account: Account,
- name: str,
- batch: str,
- ):
- document = Document(
- tenant_id=dataset.tenant_id,
- dataset_id=dataset.id,
- position=position,
- data_source_type=data_source_type,
- data_source_info=json.dumps(data_source_info),
- dataset_process_rule_id=process_rule_id,
- batch=batch,
- name=name,
- created_from=created_from,
- created_by=account.id,
- doc_form=document_form,
- doc_language=document_language,
- )
- doc_metadata = {}
- if dataset.built_in_field_enabled:
- doc_metadata = {
- BuiltInField.document_name: name,
- BuiltInField.uploader: account.name,
- BuiltInField.upload_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
- BuiltInField.last_update_date: datetime.datetime.now(datetime.UTC).strftime("%Y-%m-%d %H:%M:%S"),
- BuiltInField.source: data_source_type,
- }
- if doc_metadata:
- document.doc_metadata = doc_metadata
- return document
- @staticmethod
- def get_tenant_documents_count():
- documents_count = Document.query.filter(
- Document.completed_at.isnot(None),
- Document.enabled == True,
- Document.archived == False,
- Document.tenant_id == current_user.current_tenant_id,
- ).count()
- return documents_count
- @staticmethod
- def update_document_with_dataset_id(
- dataset: Dataset,
- document_data: KnowledgeConfig,
- account: Account,
- dataset_process_rule: Optional[DatasetProcessRule] = None,
- created_from: str = "web",
- ):
- DatasetService.check_dataset_model_setting(dataset)
- document = DocumentService.get_document(dataset.id, document_data.original_document_id)
- if document is None:
- raise NotFound("Document not found")
- if document.display_status != "available":
- raise ValueError("Document is not available")
- # save process rule
- if document_data.process_rule:
- process_rule = document_data.process_rule
- if process_rule.mode in {"custom", "hierarchical"}:
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
- created_by=account.id,
- )
- elif process_rule.mode == "automatic":
- dataset_process_rule = DatasetProcessRule(
- dataset_id=dataset.id,
- mode=process_rule.mode,
- rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
- created_by=account.id,
- )
- if dataset_process_rule is not None:
- db.session.add(dataset_process_rule)
- db.session.commit()
- document.dataset_process_rule_id = dataset_process_rule.id
- # update document data source
- if document_data.data_source:
- file_name = ""
- data_source_info = {}
- if document_data.data_source.info_list.data_source_type == "upload_file":
- if not document_data.data_source.info_list.file_info_list:
- raise ValueError("No file info list found.")
- upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
- for file_id in upload_file_list:
- file = (
- db.session.query(UploadFile)
- .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
- .first()
- )
- # raise error if file not found
- if not file:
- raise FileNotExistsError()
- file_name = file.name
- data_source_info = {
- "upload_file_id": file_id,
- }
- elif document_data.data_source.info_list.data_source_type == "notion_import":
- if not document_data.data_source.info_list.notion_info_list:
- raise ValueError("No notion info list found.")
- notion_info_list = document_data.data_source.info_list.notion_info_list
- for notion_info in notion_info_list:
- workspace_id = notion_info.workspace_id
- data_source_binding = DataSourceOauthBinding.query.filter(
- db.and_(
- DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
- DataSourceOauthBinding.provider == "notion",
- DataSourceOauthBinding.disabled == False,
- DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
- )
- ).first()
- if not data_source_binding:
- raise ValueError("Data source binding not found.")
- for page in notion_info.pages:
- data_source_info = {
- "notion_workspace_id": workspace_id,
- "notion_page_id": page.page_id,
- "notion_page_icon": page.page_icon.model_dump() if page.page_icon else None, # type: ignore
- "type": page.type,
- }
- elif document_data.data_source.info_list.data_source_type == "website_crawl":
- website_info = document_data.data_source.info_list.website_info_list
- if website_info:
- urls = website_info.urls
- for url in urls:
- data_source_info = {
- "url": url,
- "provider": website_info.provider,
- "job_id": website_info.job_id,
- "only_main_content": website_info.only_main_content, # type: ignore
- "mode": "crawl",
- }
- document.data_source_type = document_data.data_source.info_list.data_source_type
- document.data_source_info = json.dumps(data_source_info)
- document.name = file_name
- # update document name
- if document_data.name:
- document.name = document_data.name
- # update document to be waiting
- document.indexing_status = "waiting"
- document.completed_at = None
- document.processing_started_at = None
- document.parsing_completed_at = None
- document.cleaning_completed_at = None
- document.splitting_completed_at = None
- document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- document.created_from = created_from
- document.doc_form = document_data.doc_form
- db.session.add(document)
- db.session.commit()
- # update document segment
- update_params = {DocumentSegment.status: "re_segment"}
- DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
- db.session.commit()
- # trigger async task
- document_indexing_update_task.delay(document.dataset_id, document.id)
- return document
- @staticmethod
- def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
- features = FeatureService.get_features(current_user.current_tenant_id)
- if features.billing.enabled:
- count = 0
- if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
- upload_file_list = (
- knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
- if knowledge_config.data_source.info_list.file_info_list # type: ignore
- else []
- )
- count = len(upload_file_list)
- elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
- notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
- if notion_info_list:
- for notion_info in notion_info_list:
- count = count + len(notion_info.pages)
- elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
- website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
- if website_info:
- count = len(website_info.urls)
- batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
- if count > batch_upload_limit:
- raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
- DocumentService.check_documents_upload_quota(count, features)
- dataset_collection_binding_id = None
- retrieval_model = None
- if knowledge_config.indexing_technique == "high_quality":
- dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
- knowledge_config.embedding_model_provider, # type: ignore
- knowledge_config.embedding_model, # type: ignore
- )
- dataset_collection_binding_id = dataset_collection_binding.id
- if knowledge_config.retrieval_model:
- retrieval_model = knowledge_config.retrieval_model
- else:
- retrieval_model = RetrievalModel(
- search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
- reranking_enable=False,
- reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
- top_k=2,
- score_threshold_enabled=False,
- )
- # save dataset
- dataset = Dataset(
- tenant_id=tenant_id,
- name="",
- data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
- indexing_technique=knowledge_config.indexing_technique,
- created_by=account.id,
- embedding_model=knowledge_config.embedding_model,
- embedding_model_provider=knowledge_config.embedding_model_provider,
- collection_binding_id=dataset_collection_binding_id,
- retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
- )
- db.session.add(dataset) # type: ignore
- db.session.flush()
- documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)
- cut_length = 18
- cut_name = documents[0].name[:cut_length]
- dataset.name = cut_name + "..."
- dataset.description = "useful for when you want to answer queries about the " + documents[0].name
- db.session.commit()
- return dataset, documents, batch
- @classmethod
- def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
- if not knowledge_config.data_source and not knowledge_config.process_rule:
- raise ValueError("Data source or Process rule is required")
- else:
- if knowledge_config.data_source:
- DocumentService.data_source_args_validate(knowledge_config)
- if knowledge_config.process_rule:
- DocumentService.process_rule_args_validate(knowledge_config)
- @classmethod
- def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
- if not knowledge_config.data_source:
- raise ValueError("Data source is required")
- if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
- raise ValueError("Data source type is invalid")
- if not knowledge_config.data_source.info_list:
- raise ValueError("Data source info is required")
- if knowledge_config.data_source.info_list.data_source_type == "upload_file":
- if not knowledge_config.data_source.info_list.file_info_list:
- raise ValueError("File source info is required")
- if knowledge_config.data_source.info_list.data_source_type == "notion_import":
- if not knowledge_config.data_source.info_list.notion_info_list:
- raise ValueError("Notion source info is required")
- if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
- if not knowledge_config.data_source.info_list.website_info_list:
- raise ValueError("Website source info is required")
- @classmethod
- def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
- if not knowledge_config.process_rule:
- raise ValueError("Process rule is required")
- if not knowledge_config.process_rule.mode:
- raise ValueError("Process rule mode is required")
- if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
- raise ValueError("Process rule mode is invalid")
- if knowledge_config.process_rule.mode == "automatic":
- knowledge_config.process_rule.rules = None
- else:
- if not knowledge_config.process_rule.rules:
- raise ValueError("Process rule rules is required")
- if knowledge_config.process_rule.rules.pre_processing_rules is None:
- raise ValueError("Process rule pre_processing_rules is required")
- unique_pre_processing_rule_dicts = {}
- for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
- if not pre_processing_rule.id:
- raise ValueError("Process rule pre_processing_rules id is required")
- if not isinstance(pre_processing_rule.enabled, bool):
- raise ValueError("Process rule pre_processing_rules enabled is invalid")
- unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule
- knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())
- if not knowledge_config.process_rule.rules.segmentation:
- raise ValueError("Process rule segmentation is required")
- if not knowledge_config.process_rule.rules.segmentation.separator:
- raise ValueError("Process rule segmentation separator is required")
- if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
- raise ValueError("Process rule segmentation separator is invalid")
- if not (
- knowledge_config.process_rule.mode == "hierarchical"
- and knowledge_config.process_rule.rules.parent_mode == "full-doc"
- ):
- if not knowledge_config.process_rule.rules.segmentation.max_tokens:
- raise ValueError("Process rule segmentation max_tokens is required")
- if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
- raise ValueError("Process rule segmentation max_tokens is invalid")
- @classmethod
- def estimate_args_validate(cls, args: dict):
- if "info_list" not in args or not args["info_list"]:
- raise ValueError("Data source info is required")
- if not isinstance(args["info_list"], dict):
- raise ValueError("Data info is invalid")
- if "process_rule" not in args or not args["process_rule"]:
- raise ValueError("Process rule is required")
- if not isinstance(args["process_rule"], dict):
- raise ValueError("Process rule is invalid")
- if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
- raise ValueError("Process rule mode is required")
- if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
- raise ValueError("Process rule mode is invalid")
- if args["process_rule"]["mode"] == "automatic":
- args["process_rule"]["rules"] = {}
- else:
- if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
- raise ValueError("Process rule rules is required")
- if not isinstance(args["process_rule"]["rules"], dict):
- raise ValueError("Process rule rules is invalid")
- if (
- "pre_processing_rules" not in args["process_rule"]["rules"]
- or args["process_rule"]["rules"]["pre_processing_rules"] is None
- ):
- raise ValueError("Process rule pre_processing_rules is required")
- if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
- raise ValueError("Process rule pre_processing_rules is invalid")
- unique_pre_processing_rule_dicts = {}
- for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
- if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
- raise ValueError("Process rule pre_processing_rules id is required")
- if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
- raise ValueError("Process rule pre_processing_rules id is invalid")
- if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
- raise ValueError("Process rule pre_processing_rules enabled is required")
- if not isinstance(pre_processing_rule["enabled"], bool):
- raise ValueError("Process rule pre_processing_rules enabled is invalid")
- unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
- args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
- if (
- "segmentation" not in args["process_rule"]["rules"]
- or args["process_rule"]["rules"]["segmentation"] is None
- ):
- raise ValueError("Process rule segmentation is required")
- if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
- raise ValueError("Process rule segmentation is invalid")
- if (
- "separator" not in args["process_rule"]["rules"]["segmentation"]
- or not args["process_rule"]["rules"]["segmentation"]["separator"]
- ):
- raise ValueError("Process rule segmentation separator is required")
- if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
- raise ValueError("Process rule segmentation separator is invalid")
- if (
- "max_tokens" not in args["process_rule"]["rules"]["segmentation"]
- or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
- ):
- raise ValueError("Process rule segmentation max_tokens is required")
- if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
- raise ValueError("Process rule segmentation max_tokens is invalid")
- class SegmentService:
- @classmethod
- def segment_create_args_validate(cls, args: dict, document: Document):
- if document.doc_form == "qa_model":
- if "answer" not in args or not args["answer"]:
- raise ValueError("Answer is required")
- if not args["answer"].strip():
- raise ValueError("Answer is empty")
- if "content" not in args or not args["content"] or not args["content"].strip():
- raise ValueError("Content is empty")
- @classmethod
- def create_segment(cls, args: dict, document: Document, dataset: Dataset):
- content = args["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- # calc embedding use tokens
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
- lock_name = "add_segment_lock_document_id_{}".format(document.id)
- with redis_client.lock(lock_name, timeout=600):
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .filter(DocumentSegment.document_id == document.id)
- .scalar()
- )
- segment_document = DocumentSegment(
- tenant_id=current_user.current_tenant_id,
- dataset_id=document.dataset_id,
- document_id=document.id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=max_position + 1 if max_position else 1,
- content=content,
- word_count=len(content),
- tokens=tokens,
- status="completed",
- indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- created_by=current_user.id,
- )
- if document.doc_form == "qa_model":
- segment_document.word_count += len(args["answer"])
- segment_document.answer = args["answer"]
- db.session.add(segment_document)
- # update document word count
- document.word_count += segment_document.word_count
- db.session.add(document)
- db.session.commit()
- # save vector index
- try:
- VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
- except Exception as e:
- logging.exception("create segment index failed")
- segment_document.enabled = False
- segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment_document.status = "error"
- segment_document.error = str(e)
- db.session.commit()
- segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
- return segment
- @classmethod
- def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
- lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
- increment_word_count = 0
- with redis_client.lock(lock_name, timeout=600):
- embedding_model = None
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- max_position = (
- db.session.query(func.max(DocumentSegment.position))
- .filter(DocumentSegment.document_id == document.id)
- .scalar()
- )
- pre_segment_data_list = []
- segment_data_list = []
- keywords_list = []
- position = max_position + 1 if max_position else 1
- for segment_item in segments:
- content = segment_item["content"]
- doc_id = str(uuid.uuid4())
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == "high_quality" and embedding_model:
- # calc embedding use tokens
- if document.doc_form == "qa_model":
- tokens = embedding_model.get_text_embedding_num_tokens(
- texts=[content + segment_item["answer"]]
- )[0]
- else:
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
- segment_document = DocumentSegment(
- tenant_id=current_user.current_tenant_id,
- dataset_id=document.dataset_id,
- document_id=document.id,
- index_node_id=doc_id,
- index_node_hash=segment_hash,
- position=position,
- content=content,
- word_count=len(content),
- tokens=tokens,
- status="completed",
- indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
- created_by=current_user.id,
- )
- if document.doc_form == "qa_model":
- segment_document.answer = segment_item["answer"]
- segment_document.word_count += len(segment_item["answer"])
- increment_word_count += segment_document.word_count
- db.session.add(segment_document)
- segment_data_list.append(segment_document)
- position += 1
- pre_segment_data_list.append(segment_document)
- if "keywords" in segment_item:
- keywords_list.append(segment_item["keywords"])
- else:
- keywords_list.append(None)
- # update document word count
- document.word_count += increment_word_count
- db.session.add(document)
- try:
- # save vector index
- VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
- except Exception as e:
- logging.exception("create segment index failed")
- for segment_document in segment_data_list:
- segment_document.enabled = False
- segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment_document.status = "error"
- segment_document.error = str(e)
- db.session.commit()
- return segment_data_list
- @classmethod
- def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
- indexing_cache_key = "segment_{}_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Segment is indexing, please try again later")
- if args.enabled is not None:
- action = args.enabled
- if segment.enabled != action:
- if not action:
- segment.enabled = action
- segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.disabled_by = current_user.id
- db.session.add(segment)
- db.session.commit()
- # Set cache to prevent indexing the same segment multiple times
- redis_client.setex(indexing_cache_key, 600, 1)
- disable_segment_from_index_task.delay(segment.id)
- return segment
- if not segment.enabled:
- if args.enabled is not None:
- if not args.enabled:
- raise ValueError("Can't update disabled segment")
- else:
- raise ValueError("Can't update disabled segment")
- try:
- word_count_change = segment.word_count
- content = args.content or segment.content
- if segment.content == content:
- segment.word_count = len(content)
- if document.doc_form == "qa_model":
- segment.answer = args.answer
- segment.word_count += len(args.answer) if args.answer else 0
- word_count_change = segment.word_count - word_count_change
- keyword_changed = False
- if args.keywords:
- if Counter(segment.keywords) != Counter(args.keywords):
- segment.keywords = args.keywords
- keyword_changed = True
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- db.session.add(segment)
- db.session.commit()
- # update document word count
- if word_count_change != 0:
- document.word_count = max(0, document.word_count + word_count_change)
- db.session.add(document)
- # update segment index task
- if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
- # regenerate child chunks
- # get embedding model instance
- if dataset.indexing_technique == "high_quality":
- # check embedding model setting
- model_manager = ModelManager()
- if dataset.embedding_model_provider:
- embedding_model_instance = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- else:
- embedding_model_instance = model_manager.get_default_model_instance(
- tenant_id=dataset.tenant_id,
- model_type=ModelType.TEXT_EMBEDDING,
- )
- else:
- raise ValueError("The knowledge base index technique is not high quality!")
- # get the process rule
- processing_rule = (
- db.session.query(DatasetProcessRule)
- .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
- .first()
- )
- if not processing_rule:
- raise ValueError("No processing rule found.")
- VectorService.generate_child_chunks(
- segment, document, dataset, embedding_model_instance, processing_rule, True
- )
- elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
- if args.enabled or keyword_changed:
- VectorService.create_segments_vector(
- [args.keywords] if args.keywords else None,
- [segment],
- dataset,
- document.doc_form,
- )
- else:
- segment_hash = helper.generate_text_hash(content)
- tokens = 0
- if dataset.indexing_technique == "high_quality":
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=current_user.current_tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- # calc embedding use tokens
- if document.doc_form == "qa_model":
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])[0]
- else:
- tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])[0]
- segment.content = content
- segment.index_node_hash = segment_hash
- segment.word_count = len(content)
- segment.tokens = tokens
- segment.status = "completed"
- segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.updated_by = current_user.id
- segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- if document.doc_form == "qa_model":
- segment.answer = args.answer
- segment.word_count += len(args.answer) if args.answer else 0
- word_count_change = segment.word_count - word_count_change
- # update document word count
- if word_count_change != 0:
- document.word_count = max(0, document.word_count + word_count_change)
- db.session.add(document)
- db.session.add(segment)
- db.session.commit()
- if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
- # get embedding model instance
- if dataset.indexing_technique == "high_quality":
- # check embedding model setting
- model_manager = ModelManager()
- if dataset.embedding_model_provider:
- embedding_model_instance = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=dataset.embedding_model_provider,
- model_type=ModelType.TEXT_EMBEDDING,
- model=dataset.embedding_model,
- )
- else:
- embedding_model_instance = model_manager.get_default_model_instance(
- tenant_id=dataset.tenant_id,
- model_type=ModelType.TEXT_EMBEDDING,
- )
- else:
- raise ValueError("The knowledge base index technique is not high quality!")
- # get the process rule
- processing_rule = (
- db.session.query(DatasetProcessRule)
- .filter(DatasetProcessRule.id == document.dataset_process_rule_id)
- .first()
- )
- if not processing_rule:
- raise ValueError("No processing rule found.")
- VectorService.generate_child_chunks(
- segment, document, dataset, embedding_model_instance, processing_rule, True
- )
- elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
- # update segment vector index
- VectorService.update_segment_vector(args.keywords, segment, dataset)
- except Exception as e:
- logging.exception("update segment index failed")
- segment.enabled = False
- segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.status = "error"
- segment.error = str(e)
- db.session.commit()
- new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
- return new_segment
- @classmethod
- def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
- indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- raise ValueError("Segment is deleting.")
- # enabled segment need to delete index
- if segment.enabled:
- # send delete segment index task
- redis_client.setex(indexing_cache_key, 600, 1)
- delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
- db.session.delete(segment)
- # update document word count
- document.word_count -= segment.word_count
- db.session.add(document)
- db.session.commit()
- @classmethod
- def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
- index_node_ids = (
- DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
- .filter(
- DocumentSegment.id.in_(segment_ids),
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.document_id == document.id,
- DocumentSegment.tenant_id == current_user.current_tenant_id,
- )
- .all()
- )
- index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]
- delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
- db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
- db.session.commit()
- @classmethod
- def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
- if action == "enable":
- segments = (
- db.session.query(DocumentSegment)
- .filter(
- DocumentSegment.id.in_(segment_ids),
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.document_id == document.id,
- DocumentSegment.enabled == False,
- )
- .all()
- )
- if not segments:
- return
- real_deal_segmment_ids = []
- for segment in segments:
- indexing_cache_key = "segment_{}_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- continue
- segment.enabled = True
- segment.disabled_at = None
- segment.disabled_by = None
- db.session.add(segment)
- real_deal_segmment_ids.append(segment.id)
- db.session.commit()
- enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
- elif action == "disable":
- segments = (
- db.session.query(DocumentSegment)
- .filter(
- DocumentSegment.id.in_(segment_ids),
- DocumentSegment.dataset_id == dataset.id,
- DocumentSegment.document_id == document.id,
- DocumentSegment.enabled == True,
- )
- .all()
- )
- if not segments:
- return
- real_deal_segmment_ids = []
- for segment in segments:
- indexing_cache_key = "segment_{}_indexing".format(segment.id)
- cache_result = redis_client.get(indexing_cache_key)
- if cache_result is not None:
- continue
- segment.enabled = False
- segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- segment.disabled_by = current_user.id
- db.session.add(segment)
- real_deal_segmment_ids.append(segment.id)
- db.session.commit()
- disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
- else:
- raise InvalidActionError()
- @classmethod
- def create_child_chunk(
- cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
- ) -> ChildChunk:
- lock_name = "add_child_lock_{}".format(segment.id)
- with redis_client.lock(lock_name, timeout=20):
- index_node_id = str(uuid.uuid4())
- index_node_hash = helper.generate_text_hash(content)
- child_chunk_count = (
- db.session.query(ChildChunk)
- .filter(
- ChildChunk.tenant_id == current_user.current_tenant_id,
- ChildChunk.dataset_id == dataset.id,
- ChildChunk.document_id == document.id,
- ChildChunk.segment_id == segment.id,
- )
- .count()
- )
- max_position = (
- db.session.query(func.max(ChildChunk.position))
- .filter(
- ChildChunk.tenant_id == current_user.current_tenant_id,
- ChildChunk.dataset_id == dataset.id,
- ChildChunk.document_id == document.id,
- ChildChunk.segment_id == segment.id,
- )
- .scalar()
- )
- child_chunk = ChildChunk(
- tenant_id=current_user.current_tenant_id,
- dataset_id=dataset.id,
- document_id=document.id,
- segment_id=segment.id,
- position=max_position + 1,
- index_node_id=index_node_id,
- index_node_hash=index_node_hash,
- content=content,
- word_count=len(content),
- type="customized",
- created_by=current_user.id,
- )
- db.session.add(child_chunk)
- # save vector index
- try:
- VectorService.create_child_chunk_vector(child_chunk, dataset)
- except Exception as e:
- logging.exception("create child chunk index failed")
- db.session.rollback()
- raise ChildChunkIndexingError(str(e))
- db.session.commit()
- return child_chunk
- @classmethod
- def update_child_chunks(
- cls,
- child_chunks_update_args: list[ChildChunkUpdateArgs],
- segment: DocumentSegment,
- document: Document,
- dataset: Dataset,
- ) -> list[ChildChunk]:
- child_chunks = (
- db.session.query(ChildChunk)
- .filter(
- ChildChunk.dataset_id == dataset.id,
- ChildChunk.document_id == document.id,
- ChildChunk.segment_id == segment.id,
- )
- .all()
- )
- child_chunks_map = {chunk.id: chunk for chunk in child_chunks}
- new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []
- for child_chunk_update_args in child_chunks_update_args:
- if child_chunk_update_args.id:
- child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
- if child_chunk:
- if child_chunk.content != child_chunk_update_args.content:
- child_chunk.content = child_chunk_update_args.content
- child_chunk.word_count = len(child_chunk.content)
- child_chunk.updated_by = current_user.id
- child_chunk.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- child_chunk.type = "customized"
- update_child_chunks.append(child_chunk)
- else:
- new_child_chunks_args.append(child_chunk_update_args)
- if child_chunks_map:
- delete_child_chunks = list(child_chunks_map.values())
- try:
- if update_child_chunks:
- db.session.bulk_save_objects(update_child_chunks)
- if delete_child_chunks:
- for child_chunk in delete_child_chunks:
- db.session.delete(child_chunk)
- if new_child_chunks_args:
- child_chunk_count = len(child_chunks)
- for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
- index_node_id = str(uuid.uuid4())
- index_node_hash = helper.generate_text_hash(args.content)
- child_chunk = ChildChunk(
- tenant_id=current_user.current_tenant_id,
- dataset_id=dataset.id,
- document_id=document.id,
- segment_id=segment.id,
- position=position,
- index_node_id=index_node_id,
- index_node_hash=index_node_hash,
- content=args.content,
- word_count=len(args.content),
- type="customized",
- created_by=current_user.id,
- )
- db.session.add(child_chunk)
- db.session.flush()
- new_child_chunks.append(child_chunk)
- VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
- db.session.commit()
- except Exception as e:
- logging.exception("update child chunk index failed")
- db.session.rollback()
- raise ChildChunkIndexingError(str(e))
- return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)
- @classmethod
- def update_child_chunk(
- cls,
- content: str,
- child_chunk: ChildChunk,
- segment: DocumentSegment,
- document: Document,
- dataset: Dataset,
- ) -> ChildChunk:
- try:
- child_chunk.content = content
- child_chunk.word_count = len(content)
- child_chunk.updated_by = current_user.id
- child_chunk.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
- child_chunk.type = "customized"
- db.session.add(child_chunk)
- VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
- db.session.commit()
- except Exception as e:
- logging.exception("update child chunk index failed")
- db.session.rollback()
- raise ChildChunkIndexingError(str(e))
- return child_chunk
- @classmethod
- def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
- db.session.delete(child_chunk)
- try:
- VectorService.delete_child_chunk_vector(child_chunk, dataset)
- except Exception as e:
- logging.exception("delete child chunk index failed")
- db.session.rollback()
- raise ChildChunkDeleteIndexError(str(e))
- db.session.commit()
- @classmethod
- def get_child_chunks(
- cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
- ):
- query = ChildChunk.query.filter_by(
- tenant_id=current_user.current_tenant_id,
- dataset_id=dataset_id,
- document_id=document_id,
- segment_id=segment_id,
- ).order_by(ChildChunk.position.asc())
- if keyword:
- query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
- return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
- class DatasetCollectionBindingService:
- @classmethod
- def get_dataset_collection_binding(
- cls, provider_name: str, model_name: str, collection_type: str = "dataset"
- ) -> DatasetCollectionBinding:
- dataset_collection_binding = (
- db.session.query(DatasetCollectionBinding)
- .filter(
- DatasetCollectionBinding.provider_name == provider_name,
- DatasetCollectionBinding.model_name == model_name,
- DatasetCollectionBinding.type == collection_type,
- )
- .order_by(DatasetCollectionBinding.created_at)
- .first()
- )
- if not dataset_collection_binding:
- dataset_collection_binding = DatasetCollectionBinding(
- provider_name=provider_name,
- model_name=model_name,
- collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
- type=collection_type,
- )
- db.session.add(dataset_collection_binding)
- db.session.commit()
- return dataset_collection_binding
- @classmethod
- def get_dataset_collection_binding_by_id_and_type(
- cls, collection_binding_id: str, collection_type: str = "dataset"
- ) -> DatasetCollectionBinding:
- dataset_collection_binding = (
- db.session.query(DatasetCollectionBinding)
- .filter(
- DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
- )
- .order_by(DatasetCollectionBinding.created_at)
- .first()
- )
- if not dataset_collection_binding:
- raise ValueError("Dataset collection binding not found")
- return dataset_collection_binding
- class DatasetPermissionService:
- @classmethod
- def get_dataset_partial_member_list(cls, dataset_id):
- user_list_query = (
- db.session.query(
- DatasetPermission.account_id,
- )
- .filter(DatasetPermission.dataset_id == dataset_id)
- .all()
- )
- user_list = []
- for user in user_list_query:
- user_list.append(user.account_id)
- return user_list
- @classmethod
- def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
- try:
- db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
- permissions = []
- for user in user_list:
- permission = DatasetPermission(
- tenant_id=tenant_id,
- dataset_id=dataset_id,
- account_id=user["user_id"],
- )
- permissions.append(permission)
- db.session.add_all(permissions)
- db.session.commit()
- except Exception as e:
- db.session.rollback()
- raise e
- @classmethod
- def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
- if not user.is_dataset_editor:
- raise NoPermissionError("User does not have permission to edit this dataset.")
- if user.is_dataset_operator and dataset.permission != requested_permission:
- raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
- if user.is_dataset_operator and requested_permission == "partial_members":
- if not requested_partial_member_list:
- raise ValueError("Partial member list is required when setting to partial members.")
- local_member_list = cls.get_dataset_partial_member_list(dataset.id)
- request_member_list = [user["user_id"] for user in requested_partial_member_list]
- if set(local_member_list) != set(request_member_list):
- raise ValueError("Dataset operators cannot change the dataset permissions.")
- @classmethod
- def clear_partial_member_list(cls, dataset_id):
- try:
- db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
- db.session.commit()
- except Exception as e:
- db.session.rollback()
- raise e
|