| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051 | import loggingfrom argparse import ArgumentTypeErrorfrom datetime import UTC, datetimefrom typing import castfrom flask import requestfrom flask_login import current_user  # type: ignorefrom flask_restful import Resource, fields, marshal, marshal_with, reqparse  # type: ignorefrom sqlalchemy import asc, descfrom transformers.hf_argparser import string_to_bool  # type: ignorefrom werkzeug.exceptions import Forbidden, NotFoundimport servicesfrom controllers.console import apifrom controllers.console.app.error import (    ProviderModelCurrentlyNotSupportError,    ProviderNotInitializeError,    ProviderQuotaExceededError,)from controllers.console.datasets.error import (    ArchivedDocumentImmutableError,    DocumentAlreadyFinishedError,    DocumentIndexingError,    IndexingEstimateError,    InvalidActionError,    InvalidMetadataError,)from controllers.console.wraps import (    account_initialization_required,    cloud_edition_billing_resource_check,    setup_required,)from core.errors.error import (    LLMBadRequestError,    ModelCurrentlyNotSupportError,    ProviderTokenNotInitError,    QuotaExceededError,)from core.indexing_runner import IndexingRunnerfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.model_runtime.errors.invoke import InvokeAuthorizationErrorfrom core.rag.extractor.entity.extract_setting import ExtractSettingfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom fields.document_fields import (    dataset_and_document_fields,    document_fields,    document_status_fields,    document_with_segments_fields,)from libs.login import login_requiredfrom models import Dataset, DatasetProcessRule, Document, DocumentSegment, UploadFilefrom services.dataset_service import DatasetService, DocumentServicefrom services.entities.knowledge_entities.knowledge_entities import KnowledgeConfigfrom tasks.add_document_to_index_task import add_document_to_index_taskfrom tasks.remove_document_from_index_task import remove_document_from_index_taskclass DocumentResource(Resource):    def get_document(self, dataset_id: str, document_id: str) -> Document:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise NotFound("Document not found.")        if document.tenant_id != current_user.current_tenant_id:            raise Forbidden("No permission.")        return document    def get_batch_documents(self, dataset_id: str, batch: str) -> list[Document]:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        documents = DocumentService.get_batch_documents(dataset_id, batch)        if not documents:            raise NotFound("Documents not found.")        return documentsclass GetProcessRuleApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self):        req_data = request.args        document_id = req_data.get("document_id")        # get default rules        mode = DocumentService.DEFAULT_RULES["mode"]        rules = DocumentService.DEFAULT_RULES["rules"]        limits = DocumentService.DEFAULT_RULES["limits"]        if document_id:            # get the latest process rule            document = Document.query.get_or_404(document_id)            dataset = DatasetService.get_dataset(document.dataset_id)            if not dataset:                raise NotFound("Dataset not found.")            try:                DatasetService.check_dataset_permission(dataset, current_user)            except services.errors.account.NoPermissionError as e:                raise Forbidden(str(e))            # get the latest process rule            dataset_process_rule = (                db.session.query(DatasetProcessRule)                .filter(DatasetProcessRule.dataset_id == document.dataset_id)                .order_by(DatasetProcessRule.created_at.desc())                .limit(1)                .one_or_none()            )            if dataset_process_rule:                mode = dataset_process_rule.mode                rules = dataset_process_rule.rules_dict        return {"mode": mode, "rules": rules, "limits": limits}class DatasetDocumentListApi(Resource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id):        dataset_id = str(dataset_id)        page = request.args.get("page", default=1, type=int)        limit = request.args.get("limit", default=20, type=int)        search = request.args.get("keyword", default=None, type=str)        sort = request.args.get("sort", default="-created_at", type=str)        # "yes", "true", "t", "y", "1" convert to True, while others convert to False.        try:            fetch = string_to_bool(request.args.get("fetch", default="false"))        except (ArgumentTypeError, ValueError, Exception) as e:            fetch = False        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        query = Document.query.filter_by(dataset_id=str(dataset_id), tenant_id=current_user.current_tenant_id)        if search:            search = f"%{search}%"            query = query.filter(Document.name.like(search))        if sort.startswith("-"):            sort_logic = desc            sort = sort[1:]        else:            sort_logic = asc        if sort == "hit_count":            sub_query = (                db.select(DocumentSegment.document_id, db.func.sum(DocumentSegment.hit_count).label("total_hit_count"))                .group_by(DocumentSegment.document_id)                .subquery()            )            query = query.outerjoin(sub_query, sub_query.c.document_id == Document.id).order_by(                sort_logic(db.func.coalesce(sub_query.c.total_hit_count, 0)),                sort_logic(Document.position),            )        elif sort == "created_at":            query = query.order_by(                sort_logic(Document.created_at),                sort_logic(Document.position),            )        else:            query = query.order_by(                desc(Document.created_at),                desc(Document.position),            )        paginated_documents = query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)        documents = paginated_documents.items        if fetch:            for document in documents:                completed_segments = DocumentSegment.query.filter(                    DocumentSegment.completed_at.isnot(None),                    DocumentSegment.document_id == str(document.id),                    DocumentSegment.status != "re_segment",                ).count()                total_segments = DocumentSegment.query.filter(                    DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"                ).count()                document.completed_segments = completed_segments                document.total_segments = total_segments            data = marshal(documents, document_with_segments_fields)        else:            data = marshal(documents, document_fields)        response = {            "data": data,            "has_more": len(documents) == limit,            "limit": limit,            "total": paginated_documents.total,            "page": page,        }        return response    documents_and_batch_fields = {"documents": fields.List(fields.Nested(document_fields)), "batch": fields.String}    @setup_required    @login_required    @account_initialization_required    @marshal_with(documents_and_batch_fields)    @cloud_edition_billing_resource_check("vector_space")    def post(self, dataset_id):        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_dataset_editor:            raise Forbidden()        try:            DatasetService.check_dataset_permission(dataset, current_user)        except services.errors.account.NoPermissionError as e:            raise Forbidden(str(e))        parser = reqparse.RequestParser()        parser.add_argument(            "indexing_technique", type=str, choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=False, location="json"        )        parser.add_argument("data_source", type=dict, required=False, location="json")        parser.add_argument("process_rule", type=dict, required=False, location="json")        parser.add_argument("duplicate", type=bool, default=True, nullable=False, location="json")        parser.add_argument("original_document_id", type=str, required=False, location="json")        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")        parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")        parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")        parser.add_argument(            "doc_language", type=str, default="English", required=False, nullable=False, location="json"        )        args = parser.parse_args()        knowledge_config = KnowledgeConfig(**args)        if not dataset.indexing_technique and not knowledge_config.indexing_technique:            raise ValueError("indexing_technique is required.")        # validate args        DocumentService.document_create_args_validate(knowledge_config)        try:            documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, current_user)        except ProviderTokenNotInitError as ex:            raise ProviderNotInitializeError(ex.description)        except QuotaExceededError:            raise ProviderQuotaExceededError()        except ModelCurrentlyNotSupportError:            raise ProviderModelCurrentlyNotSupportError()        return {"documents": documents, "batch": batch}    @setup_required    @login_required    @account_initialization_required    def delete(self, dataset_id):        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        try:            document_ids = request.args.getlist("document_id")            DocumentService.delete_documents(dataset, document_ids)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError("Cannot delete document during indexing.")        return {"result": "success"}, 204class DatasetInitApi(Resource):    @setup_required    @login_required    @account_initialization_required    @marshal_with(dataset_and_document_fields)    @cloud_edition_billing_resource_check("vector_space")    def post(self):        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        parser = reqparse.RequestParser()        parser.add_argument(            "indexing_technique",            type=str,            choices=Dataset.INDEXING_TECHNIQUE_LIST,            required=True,            nullable=False,            location="json",        )        parser.add_argument("data_source", type=dict, required=True, nullable=True, location="json")        parser.add_argument("process_rule", type=dict, required=True, nullable=True, location="json")        parser.add_argument("doc_form", type=str, default="text_model", required=False, nullable=False, location="json")        parser.add_argument(            "doc_language", type=str, default="English", required=False, nullable=False, location="json"        )        parser.add_argument("retrieval_model", type=dict, required=False, nullable=False, location="json")        parser.add_argument("embedding_model", type=str, required=False, nullable=True, location="json")        parser.add_argument("embedding_model_provider", type=str, required=False, nullable=True, location="json")        args = parser.parse_args()        # The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator        if not current_user.is_dataset_editor:            raise Forbidden()        knowledge_config = KnowledgeConfig(**args)        if knowledge_config.indexing_technique == "high_quality":            if knowledge_config.embedding_model is None or knowledge_config.embedding_model_provider is None:                raise ValueError("embedding model and embedding model provider are required for high quality indexing.")            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=args["embedding_model_provider"],                    model_type=ModelType.TEXT_EMBEDDING,                    model=args["embedding_model"],                )            except InvokeAuthorizationError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)        # validate args        DocumentService.document_create_args_validate(knowledge_config)        try:            dataset, documents, batch = DocumentService.save_document_without_dataset_id(                tenant_id=current_user.current_tenant_id, knowledge_config=knowledge_config, account=current_user            )        except ProviderTokenNotInitError as ex:            raise ProviderNotInitializeError(ex.description)        except QuotaExceededError:            raise ProviderQuotaExceededError()        except ModelCurrentlyNotSupportError:            raise ProviderModelCurrentlyNotSupportError()        response = {"dataset": dataset, "documents": documents, "batch": batch}        return responseclass DocumentIndexingEstimateApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        if document.indexing_status in {"completed", "error"}:            raise DocumentAlreadyFinishedError()        data_process_rule = document.dataset_process_rule        data_process_rule_dict = data_process_rule.to_dict()        response = {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}        if document.data_source_type == "upload_file":            data_source_info = document.data_source_info_dict            if data_source_info and "upload_file_id" in data_source_info:                file_id = data_source_info["upload_file_id"]                file = (                    db.session.query(UploadFile)                    .filter(UploadFile.tenant_id == document.tenant_id, UploadFile.id == file_id)                    .first()                )                # raise error if file not found                if not file:                    raise NotFound("File not found.")                extract_setting = ExtractSetting(                    datasource_type="upload_file", upload_file=file, document_model=document.doc_form                )                indexing_runner = IndexingRunner()                try:                    estimate_response = indexing_runner.indexing_estimate(                        current_user.current_tenant_id,                        [extract_setting],                        data_process_rule_dict,                        document.doc_form,                        "English",                        dataset_id,                    )                    return estimate_response.model_dump(), 200                except LLMBadRequestError:                    raise ProviderNotInitializeError(                        "No Embedding Model available. Please configure a valid provider "                        "in the Settings -> Model Provider."                    )                except ProviderTokenNotInitError as ex:                    raise ProviderNotInitializeError(ex.description)                except Exception as e:                    raise IndexingEstimateError(str(e))        return response, 200class DocumentBatchIndexingEstimateApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, batch):        dataset_id = str(dataset_id)        batch = str(batch)        documents = self.get_batch_documents(dataset_id, batch)        if not documents:            return {"tokens": 0, "total_price": 0, "currency": "USD", "total_segments": 0, "preview": []}, 200        data_process_rule = documents[0].dataset_process_rule        data_process_rule_dict = data_process_rule.to_dict()        info_list = []        extract_settings = []        for document in documents:            if document.indexing_status in {"completed", "error"}:                raise DocumentAlreadyFinishedError()            data_source_info = document.data_source_info_dict            # format document files info            if data_source_info and "upload_file_id" in data_source_info:                file_id = data_source_info["upload_file_id"]                info_list.append(file_id)            # format document notion info            elif (                data_source_info and "notion_workspace_id" in data_source_info and "notion_page_id" in data_source_info            ):                pages = []                page = {"page_id": data_source_info["notion_page_id"], "type": data_source_info["type"]}                pages.append(page)                notion_info = {"workspace_id": data_source_info["notion_workspace_id"], "pages": pages}                info_list.append(notion_info)            if document.data_source_type == "upload_file":                file_id = data_source_info["upload_file_id"]                file_detail = (                    db.session.query(UploadFile)                    .filter(UploadFile.tenant_id == current_user.current_tenant_id, UploadFile.id == file_id)                    .first()                )                if file_detail is None:                    raise NotFound("File not found.")                extract_setting = ExtractSetting(                    datasource_type="upload_file", upload_file=file_detail, document_model=document.doc_form                )                extract_settings.append(extract_setting)            elif document.data_source_type == "notion_import":                extract_setting = ExtractSetting(                    datasource_type="notion_import",                    notion_info={                        "notion_workspace_id": data_source_info["notion_workspace_id"],                        "notion_obj_id": data_source_info["notion_page_id"],                        "notion_page_type": data_source_info["type"],                        "tenant_id": current_user.current_tenant_id,                    },                    document_model=document.doc_form,                )                extract_settings.append(extract_setting)            elif document.data_source_type == "website_crawl":                extract_setting = ExtractSetting(                    datasource_type="website_crawl",                    website_info={                        "provider": data_source_info["provider"],                        "job_id": data_source_info["job_id"],                        "url": data_source_info["url"],                        "tenant_id": current_user.current_tenant_id,                        "mode": data_source_info["mode"],                        "only_main_content": data_source_info["only_main_content"],                    },                    document_model=document.doc_form,                )                extract_settings.append(extract_setting)            else:                raise ValueError("Data source type not support")            indexing_runner = IndexingRunner()            try:                response = indexing_runner.indexing_estimate(                    current_user.current_tenant_id,                    extract_settings,                    data_process_rule_dict,                    document.doc_form,                    "English",                    dataset_id,                )                return response.model_dump(), 200            except LLMBadRequestError:                raise ProviderNotInitializeError(                    "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ProviderNotInitializeError(ex.description)            except Exception as e:                raise IndexingEstimateError(str(e))class DocumentBatchIndexingStatusApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, batch):        dataset_id = str(dataset_id)        batch = str(batch)        documents = self.get_batch_documents(dataset_id, batch)        documents_status = []        for document in documents:            completed_segments = DocumentSegment.query.filter(                DocumentSegment.completed_at.isnot(None),                DocumentSegment.document_id == str(document.id),                DocumentSegment.status != "re_segment",            ).count()            total_segments = DocumentSegment.query.filter(                DocumentSegment.document_id == str(document.id), DocumentSegment.status != "re_segment"            ).count()            document.completed_segments = completed_segments            document.total_segments = total_segments            if document.is_paused:                document.indexing_status = "paused"            documents_status.append(marshal(document, document_status_fields))        data = {"data": documents_status}        return dataclass DocumentIndexingStatusApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        completed_segments = DocumentSegment.query.filter(            DocumentSegment.completed_at.isnot(None),            DocumentSegment.document_id == str(document_id),            DocumentSegment.status != "re_segment",        ).count()        total_segments = DocumentSegment.query.filter(            DocumentSegment.document_id == str(document_id), DocumentSegment.status != "re_segment"        ).count()        document.completed_segments = completed_segments        document.total_segments = total_segments        if document.is_paused:            document.indexing_status = "paused"        return marshal(document, document_status_fields)class DocumentDetailApi(DocumentResource):    METADATA_CHOICES = {"all", "only", "without"}    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        metadata = request.args.get("metadata", "all")        if metadata not in self.METADATA_CHOICES:            raise InvalidMetadataError(f"Invalid metadata value: {metadata}")        if metadata == "only":            response = {"id": document.id, "doc_type": document.doc_type, "doc_metadata": document.doc_metadata}        elif metadata == "without":            dataset_process_rules = DatasetService.get_process_rules(dataset_id)            document_process_rules = document.dataset_process_rule.to_dict()            data_source_info = document.data_source_detail_dict            response = {                "id": document.id,                "position": document.position,                "data_source_type": document.data_source_type,                "data_source_info": data_source_info,                "dataset_process_rule_id": document.dataset_process_rule_id,                "dataset_process_rule": dataset_process_rules,                "document_process_rule": document_process_rules,                "name": document.name,                "created_from": document.created_from,                "created_by": document.created_by,                "created_at": document.created_at.timestamp(),                "tokens": document.tokens,                "indexing_status": document.indexing_status,                "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,                "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,                "indexing_latency": document.indexing_latency,                "error": document.error,                "enabled": document.enabled,                "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,                "disabled_by": document.disabled_by,                "archived": document.archived,                "segment_count": document.segment_count,                "average_segment_length": document.average_segment_length,                "hit_count": document.hit_count,                "display_status": document.display_status,                "doc_form": document.doc_form,                "doc_language": document.doc_language,            }        else:            dataset_process_rules = DatasetService.get_process_rules(dataset_id)            document_process_rules = document.dataset_process_rule.to_dict()            data_source_info = document.data_source_detail_dict            response = {                "id": document.id,                "position": document.position,                "data_source_type": document.data_source_type,                "data_source_info": data_source_info,                "dataset_process_rule_id": document.dataset_process_rule_id,                "dataset_process_rule": dataset_process_rules,                "document_process_rule": document_process_rules,                "name": document.name,                "created_from": document.created_from,                "created_by": document.created_by,                "created_at": document.created_at.timestamp(),                "tokens": document.tokens,                "indexing_status": document.indexing_status,                "completed_at": int(document.completed_at.timestamp()) if document.completed_at else None,                "updated_at": int(document.updated_at.timestamp()) if document.updated_at else None,                "indexing_latency": document.indexing_latency,                "error": document.error,                "enabled": document.enabled,                "disabled_at": int(document.disabled_at.timestamp()) if document.disabled_at else None,                "disabled_by": document.disabled_by,                "archived": document.archived,                "doc_type": document.doc_type,                "doc_metadata": document.doc_metadata,                "segment_count": document.segment_count,                "average_segment_length": document.average_segment_length,                "hit_count": document.hit_count,                "display_status": document.display_status,                "doc_form": document.doc_form,                "doc_language": document.doc_language,            }        return response, 200class DocumentProcessingApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id, document_id, action):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        if action == "pause":            if document.indexing_status != "indexing":                raise InvalidActionError("Document not in indexing state.")            document.paused_by = current_user.id            document.paused_at = datetime.now(UTC).replace(tzinfo=None)            document.is_paused = True            db.session.commit()        elif action == "resume":            if document.indexing_status not in {"paused", "error"}:                raise InvalidActionError("Document not in paused or error state.")            document.paused_by = None            document.paused_at = None            document.is_paused = False            db.session.commit()        else:            raise InvalidActionError()        return {"result": "success"}, 200class DocumentDeleteApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def delete(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            raise NotFound("Dataset not found.")        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        document = self.get_document(dataset_id, document_id)        try:            DocumentService.delete_document(document)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError("Cannot delete document during indexing.")        return {"result": "success"}, 204class DocumentMetadataApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def put(self, dataset_id, document_id):        dataset_id = str(dataset_id)        document_id = str(document_id)        document = self.get_document(dataset_id, document_id)        req_data = request.get_json()        doc_type = req_data.get("doc_type")        doc_metadata = req_data.get("doc_metadata")        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_editor:            raise Forbidden()        if doc_type is None or doc_metadata is None:            raise ValueError("Both doc_type and doc_metadata must be provided.")        if doc_type not in DocumentService.DOCUMENT_METADATA_SCHEMA:            raise ValueError("Invalid doc_type.")        if not isinstance(doc_metadata, dict):            raise ValueError("doc_metadata must be a dictionary.")        metadata_schema: dict = cast(dict, DocumentService.DOCUMENT_METADATA_SCHEMA[doc_type])        document.doc_metadata = {}        if doc_type == "others":            document.doc_metadata = doc_metadata        else:            for key, value_type in metadata_schema.items():                value = doc_metadata.get(key)                if value is not None and isinstance(value, value_type):                    document.doc_metadata[key] = value        document.doc_type = doc_type        document.updated_at = datetime.now(UTC).replace(tzinfo=None)        db.session.commit()        return {"result": "success", "message": "Document metadata updated."}, 200class DocumentStatusApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    @cloud_edition_billing_resource_check("vector_space")    def patch(self, dataset_id, action):        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            raise NotFound("Dataset not found.")        # The role of the current user in the ta table must be admin, owner, or editor        if not current_user.is_dataset_editor:            raise Forbidden()        # check user's model setting        DatasetService.check_dataset_model_setting(dataset)        # check user's permission        DatasetService.check_dataset_permission(dataset, current_user)        document_ids = request.args.getlist("document_id")        for document_id in document_ids:            document = self.get_document(dataset_id, document_id)            indexing_cache_key = "document_{}_indexing".format(document.id)            cache_result = redis_client.get(indexing_cache_key)            if cache_result is not None:                raise InvalidActionError(f"Document:{document.name} is being indexed, please try again later")            if action == "enable":                if document.enabled:                    continue                document.enabled = True                document.disabled_at = None                document.disabled_by = None                document.updated_at = datetime.now(UTC).replace(tzinfo=None)                db.session.commit()                # Set cache to prevent indexing the same document multiple times                redis_client.setex(indexing_cache_key, 600, 1)                add_document_to_index_task.delay(document_id)            elif action == "disable":                if not document.completed_at or document.indexing_status != "completed":                    raise InvalidActionError(f"Document: {document.name} is not completed.")                if not document.enabled:                    continue                document.enabled = False                document.disabled_at = datetime.now(UTC).replace(tzinfo=None)                document.disabled_by = current_user.id                document.updated_at = datetime.now(UTC).replace(tzinfo=None)                db.session.commit()                # Set cache to prevent indexing the same document multiple times                redis_client.setex(indexing_cache_key, 600, 1)                remove_document_from_index_task.delay(document_id)            elif action == "archive":                if document.archived:                    continue                document.archived = True                document.archived_at = datetime.now(UTC).replace(tzinfo=None)                document.archived_by = current_user.id                document.updated_at = datetime.now(UTC).replace(tzinfo=None)                db.session.commit()                if document.enabled:                    # Set cache to prevent indexing the same document multiple times                    redis_client.setex(indexing_cache_key, 600, 1)                    remove_document_from_index_task.delay(document_id)            elif action == "un_archive":                if not document.archived:                    continue                document.archived = False                document.archived_at = None                document.archived_by = None                document.updated_at = datetime.now(UTC).replace(tzinfo=None)                db.session.commit()                # Set cache to prevent indexing the same document multiple times                redis_client.setex(indexing_cache_key, 600, 1)                add_document_to_index_task.delay(document_id)            else:                raise InvalidActionError()        return {"result": "success"}, 200class DocumentPauseApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id, document_id):        """pause document."""        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        document = DocumentService.get_document(dataset.id, document_id)        # 404 if document not found        if document is None:            raise NotFound("Document Not Exists.")        # 403 if document is archived        if DocumentService.check_archived(document):            raise ArchivedDocumentImmutableError()        try:            # pause document            DocumentService.pause_document(document)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError("Cannot pause completed document.")        return {"result": "success"}, 204class DocumentRecoverApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def patch(self, dataset_id, document_id):        """recover document."""        dataset_id = str(dataset_id)        document_id = str(document_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        document = DocumentService.get_document(dataset.id, document_id)        # 404 if document not found        if document is None:            raise NotFound("Document Not Exists.")        # 403 if document is archived        if DocumentService.check_archived(document):            raise ArchivedDocumentImmutableError()        try:            # pause document            DocumentService.recover_document(document)        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError("Document is not in paused status.")        return {"result": "success"}, 204class DocumentRetryApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def post(self, dataset_id):        """retry document."""        parser = reqparse.RequestParser()        parser.add_argument("document_ids", type=list, required=True, nullable=False, location="json")        args = parser.parse_args()        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        retry_documents = []        if not dataset:            raise NotFound("Dataset not found.")        for document_id in args["document_ids"]:            try:                document_id = str(document_id)                document = DocumentService.get_document(dataset.id, document_id)                # 404 if document not found                if document is None:                    raise NotFound("Document Not Exists.")                # 403 if document is archived                if DocumentService.check_archived(document):                    raise ArchivedDocumentImmutableError()                # 400 if document is completed                if document.indexing_status == "completed":                    raise DocumentAlreadyFinishedError()                retry_documents.append(document)            except Exception:                logging.exception(f"Failed to retry document, document id: {document_id}")                continue        # retry document        DocumentService.retry_document(dataset_id, retry_documents)        return {"result": "success"}, 204class DocumentRenameApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    @marshal_with(document_fields)    def post(self, dataset_id, document_id):        # The role of the current user in the ta table must be admin, owner, editor, or dataset_operator        if not current_user.is_dataset_editor:            raise Forbidden()        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_operator_permission(current_user, dataset)        parser = reqparse.RequestParser()        parser.add_argument("name", type=str, required=True, nullable=False, location="json")        args = parser.parse_args()        try:            document = DocumentService.rename_document(dataset_id, document_id, args["name"])        except services.errors.document.DocumentIndexingError:            raise DocumentIndexingError("Cannot delete document during indexing.")        return documentclass WebsiteDocumentSyncApi(DocumentResource):    @setup_required    @login_required    @account_initialization_required    def get(self, dataset_id, document_id):        """sync website document."""        dataset_id = str(dataset_id)        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise NotFound("Dataset not found.")        document_id = str(document_id)        document = DocumentService.get_document(dataset.id, document_id)        if not document:            raise NotFound("Document not found.")        if document.tenant_id != current_user.current_tenant_id:            raise Forbidden("No permission.")        if document.data_source_type != "website_crawl":            raise ValueError("Document is not a website document.")        # 403 if document is archived        if DocumentService.check_archived(document):            raise ArchivedDocumentImmutableError()        # sync document        DocumentService.sync_website_document(dataset_id, document)        return {"result": "success"}, 200api.add_resource(GetProcessRuleApi, "/datasets/process-rule")api.add_resource(DatasetDocumentListApi, "/datasets/<uuid:dataset_id>/documents")api.add_resource(DatasetInitApi, "/datasets/init")api.add_resource(    DocumentIndexingEstimateApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-estimate")api.add_resource(DocumentBatchIndexingEstimateApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-estimate")api.add_resource(DocumentBatchIndexingStatusApi, "/datasets/<uuid:dataset_id>/batch/<string:batch>/indexing-status")api.add_resource(DocumentIndexingStatusApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/indexing-status")api.add_resource(DocumentDetailApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")api.add_resource(    DocumentProcessingApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/<string:action>")api.add_resource(DocumentDeleteApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>")api.add_resource(DocumentMetadataApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/metadata")api.add_resource(DocumentStatusApi, "/datasets/<uuid:dataset_id>/documents/status/<string:action>/batch")api.add_resource(DocumentPauseApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/pause")api.add_resource(DocumentRecoverApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/processing/resume")api.add_resource(DocumentRetryApi, "/datasets/<uuid:dataset_id>/retry")api.add_resource(DocumentRenameApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/rename")api.add_resource(WebsiteDocumentSyncApi, "/datasets/<uuid:dataset_id>/documents/<uuid:document_id>/website-sync")
 |