dataset_service.py 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional
  8. from flask_login import current_user
  9. from sqlalchemy import func
  10. from configs import dify_config
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.rag.datasource.keyword.keyword_factory import Keyword
  15. from core.rag.models.document import Document as RAGDocument
  16. from core.rag.retrieval.retrival_methods import RetrievalMethod
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account, TenantAccountRole
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetPermission,
  28. DatasetProcessRule,
  29. DatasetQuery,
  30. Document,
  31. DocumentSegment,
  32. )
  33. from models.model import UploadFile
  34. from models.source import DataSourceOauthBinding
  35. from services.errors.account import NoPermissionError
  36. from services.errors.dataset import DatasetNameDuplicateError
  37. from services.errors.document import DocumentIndexingError
  38. from services.errors.file import FileNotExistsError
  39. from services.feature_service import FeatureModel, FeatureService
  40. from services.tag_service import TagService
  41. from services.vector_service import VectorService
  42. from tasks.clean_notion_document_task import clean_notion_document_task
  43. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  44. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  45. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  46. from tasks.document_indexing_task import document_indexing_task
  47. from tasks.document_indexing_update_task import document_indexing_update_task
  48. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  49. from tasks.recover_document_indexing_task import recover_document_indexing_task
  50. from tasks.retry_document_indexing_task import retry_document_indexing_task
  51. from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
  52. class DatasetService:
  53. @staticmethod
  54. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  55. query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
  56. Dataset.created_at.desc()
  57. )
  58. if user:
  59. # get permitted dataset ids
  60. dataset_permission = DatasetPermission.query.filter_by(
  61. account_id=user.id,
  62. tenant_id=tenant_id
  63. ).all()
  64. permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
  65. if user.current_role == TenantAccountRole.DATASET_OPERATOR:
  66. # only show datasets that the user has permission to access
  67. if permitted_dataset_ids:
  68. query = query.filter(Dataset.id.in_(permitted_dataset_ids))
  69. else:
  70. return [], 0
  71. else:
  72. # show all datasets that the user has permission to access
  73. if permitted_dataset_ids:
  74. query = query.filter(
  75. db.or_(
  76. Dataset.permission == 'all_team_members',
  77. db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id),
  78. db.and_(Dataset.permission == 'partial_members', Dataset.id.in_(permitted_dataset_ids))
  79. )
  80. )
  81. else:
  82. query = query.filter(
  83. db.or_(
  84. Dataset.permission == 'all_team_members',
  85. db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id)
  86. )
  87. )
  88. else:
  89. # if no user, only show datasets that are shared with all team members
  90. query = query.filter(Dataset.permission == 'all_team_members')
  91. if search:
  92. query = query.filter(Dataset.name.ilike(f'%{search}%'))
  93. if tag_ids:
  94. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  95. if target_ids:
  96. query = query.filter(Dataset.id.in_(target_ids))
  97. else:
  98. return [], 0
  99. datasets = query.paginate(
  100. page=page,
  101. per_page=per_page,
  102. max_per_page=100,
  103. error_out=False
  104. )
  105. return datasets.items, datasets.total
  106. @staticmethod
  107. def get_process_rules(dataset_id):
  108. # get the latest process rule
  109. dataset_process_rule = db.session.query(DatasetProcessRule). \
  110. filter(DatasetProcessRule.dataset_id == dataset_id). \
  111. order_by(DatasetProcessRule.created_at.desc()). \
  112. limit(1). \
  113. one_or_none()
  114. if dataset_process_rule:
  115. mode = dataset_process_rule.mode
  116. rules = dataset_process_rule.rules_dict
  117. else:
  118. mode = DocumentService.DEFAULT_RULES['mode']
  119. rules = DocumentService.DEFAULT_RULES['rules']
  120. return {
  121. 'mode': mode,
  122. 'rules': rules
  123. }
  124. @staticmethod
  125. def get_datasets_by_ids(ids, tenant_id):
  126. datasets = Dataset.query.filter(
  127. Dataset.id.in_(ids),
  128. Dataset.tenant_id == tenant_id
  129. ).paginate(
  130. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
  131. )
  132. return datasets.items, datasets.total
  133. @staticmethod
  134. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  135. # check if dataset name already exists
  136. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  137. raise DatasetNameDuplicateError(
  138. f'Dataset with name {name} already exists.'
  139. )
  140. embedding_model = None
  141. if indexing_technique == 'high_quality':
  142. model_manager = ModelManager()
  143. embedding_model = model_manager.get_default_model_instance(
  144. tenant_id=tenant_id,
  145. model_type=ModelType.TEXT_EMBEDDING
  146. )
  147. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  148. # dataset = Dataset(name=name, provider=provider, config=config)
  149. dataset.created_by = account.id
  150. dataset.updated_by = account.id
  151. dataset.tenant_id = tenant_id
  152. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  153. dataset.embedding_model = embedding_model.model if embedding_model else None
  154. db.session.add(dataset)
  155. db.session.commit()
  156. return dataset
  157. @staticmethod
  158. def get_dataset(dataset_id):
  159. return Dataset.query.filter_by(
  160. id=dataset_id
  161. ).first()
  162. @staticmethod
  163. def check_dataset_model_setting(dataset):
  164. if dataset.indexing_technique == 'high_quality':
  165. try:
  166. model_manager = ModelManager()
  167. model_manager.get_model_instance(
  168. tenant_id=dataset.tenant_id,
  169. provider=dataset.embedding_model_provider,
  170. model_type=ModelType.TEXT_EMBEDDING,
  171. model=dataset.embedding_model
  172. )
  173. except LLMBadRequestError:
  174. raise ValueError(
  175. "No Embedding Model available. Please configure a valid provider "
  176. "in the Settings -> Model Provider."
  177. )
  178. except ProviderTokenNotInitError as ex:
  179. raise ValueError(
  180. f"The dataset in unavailable, due to: "
  181. f"{ex.description}"
  182. )
  183. @staticmethod
  184. def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model:str):
  185. try:
  186. model_manager = ModelManager()
  187. model_manager.get_model_instance(
  188. tenant_id=tenant_id,
  189. provider=embedding_model_provider,
  190. model_type=ModelType.TEXT_EMBEDDING,
  191. model=embedding_model
  192. )
  193. except LLMBadRequestError:
  194. raise ValueError(
  195. "No Embedding Model available. Please configure a valid provider "
  196. "in the Settings -> Model Provider."
  197. )
  198. except ProviderTokenNotInitError as ex:
  199. raise ValueError(
  200. f"The dataset in unavailable, due to: "
  201. f"{ex.description}"
  202. )
  203. @staticmethod
  204. def update_dataset(dataset_id, data, user):
  205. data.pop('partial_member_list', None)
  206. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  207. dataset = DatasetService.get_dataset(dataset_id)
  208. DatasetService.check_dataset_permission(dataset, user)
  209. action = None
  210. if dataset.indexing_technique != data['indexing_technique']:
  211. # if update indexing_technique
  212. if data['indexing_technique'] == 'economy':
  213. action = 'remove'
  214. filtered_data['embedding_model'] = None
  215. filtered_data['embedding_model_provider'] = None
  216. filtered_data['collection_binding_id'] = None
  217. elif data['indexing_technique'] == 'high_quality':
  218. action = 'add'
  219. # get embedding model setting
  220. try:
  221. model_manager = ModelManager()
  222. embedding_model = model_manager.get_model_instance(
  223. tenant_id=current_user.current_tenant_id,
  224. provider=data['embedding_model_provider'],
  225. model_type=ModelType.TEXT_EMBEDDING,
  226. model=data['embedding_model']
  227. )
  228. filtered_data['embedding_model'] = embedding_model.model
  229. filtered_data['embedding_model_provider'] = embedding_model.provider
  230. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  231. embedding_model.provider,
  232. embedding_model.model
  233. )
  234. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  235. except LLMBadRequestError:
  236. raise ValueError(
  237. "No Embedding Model available. Please configure a valid provider "
  238. "in the Settings -> Model Provider."
  239. )
  240. except ProviderTokenNotInitError as ex:
  241. raise ValueError(ex.description)
  242. else:
  243. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  244. data['embedding_model'] != dataset.embedding_model:
  245. action = 'update'
  246. try:
  247. model_manager = ModelManager()
  248. embedding_model = model_manager.get_model_instance(
  249. tenant_id=current_user.current_tenant_id,
  250. provider=data['embedding_model_provider'],
  251. model_type=ModelType.TEXT_EMBEDDING,
  252. model=data['embedding_model']
  253. )
  254. filtered_data['embedding_model'] = embedding_model.model
  255. filtered_data['embedding_model_provider'] = embedding_model.provider
  256. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  257. embedding_model.provider,
  258. embedding_model.model
  259. )
  260. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  261. except LLMBadRequestError:
  262. raise ValueError(
  263. "No Embedding Model available. Please configure a valid provider "
  264. "in the Settings -> Model Provider."
  265. )
  266. except ProviderTokenNotInitError as ex:
  267. raise ValueError(ex.description)
  268. filtered_data['updated_by'] = user.id
  269. filtered_data['updated_at'] = datetime.datetime.now()
  270. # update Retrieval model
  271. filtered_data['retrieval_model'] = data['retrieval_model']
  272. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  273. db.session.commit()
  274. if action:
  275. deal_dataset_vector_index_task.delay(dataset_id, action)
  276. return dataset
  277. @staticmethod
  278. def delete_dataset(dataset_id, user):
  279. dataset = DatasetService.get_dataset(dataset_id)
  280. if dataset is None:
  281. return False
  282. DatasetService.check_dataset_permission(dataset, user)
  283. dataset_was_deleted.send(dataset)
  284. db.session.delete(dataset)
  285. db.session.commit()
  286. return True
  287. @staticmethod
  288. def dataset_use_check(dataset_id) -> bool:
  289. count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
  290. if count > 0:
  291. return True
  292. return False
  293. @staticmethod
  294. def check_dataset_permission(dataset, user):
  295. if dataset.tenant_id != user.current_tenant_id:
  296. logging.debug(
  297. f'User {user.id} does not have permission to access dataset {dataset.id}'
  298. )
  299. raise NoPermissionError(
  300. 'You do not have permission to access this dataset.'
  301. )
  302. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  303. logging.debug(
  304. f'User {user.id} does not have permission to access dataset {dataset.id}'
  305. )
  306. raise NoPermissionError(
  307. 'You do not have permission to access this dataset.'
  308. )
  309. if dataset.permission == 'partial_members':
  310. user_permission = DatasetPermission.query.filter_by(
  311. dataset_id=dataset.id, account_id=user.id
  312. ).first()
  313. if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
  314. logging.debug(
  315. f'User {user.id} does not have permission to access dataset {dataset.id}'
  316. )
  317. raise NoPermissionError(
  318. 'You do not have permission to access this dataset.'
  319. )
  320. @staticmethod
  321. def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
  322. if dataset.permission == 'only_me':
  323. if dataset.created_by != user.id:
  324. raise NoPermissionError('You do not have permission to access this dataset.')
  325. elif dataset.permission == 'partial_members':
  326. if not any(
  327. dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
  328. ):
  329. raise NoPermissionError('You do not have permission to access this dataset.')
  330. @staticmethod
  331. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  332. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  333. .order_by(db.desc(DatasetQuery.created_at)) \
  334. .paginate(
  335. page=page, per_page=per_page, max_per_page=100, error_out=False
  336. )
  337. return dataset_queries.items, dataset_queries.total
  338. @staticmethod
  339. def get_related_apps(dataset_id: str):
  340. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  341. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  342. class DocumentService:
  343. DEFAULT_RULES = {
  344. 'mode': 'custom',
  345. 'rules': {
  346. 'pre_processing_rules': [
  347. {'id': 'remove_extra_spaces', 'enabled': True},
  348. {'id': 'remove_urls_emails', 'enabled': False}
  349. ],
  350. 'segmentation': {
  351. 'delimiter': '\n',
  352. 'max_tokens': 500,
  353. 'chunk_overlap': 50
  354. }
  355. }
  356. }
  357. DOCUMENT_METADATA_SCHEMA = {
  358. "book": {
  359. "title": str,
  360. "language": str,
  361. "author": str,
  362. "publisher": str,
  363. "publication_date": str,
  364. "isbn": str,
  365. "category": str,
  366. },
  367. "web_page": {
  368. "title": str,
  369. "url": str,
  370. "language": str,
  371. "publish_date": str,
  372. "author/publisher": str,
  373. "topic/keywords": str,
  374. "description": str,
  375. },
  376. "paper": {
  377. "title": str,
  378. "language": str,
  379. "author": str,
  380. "publish_date": str,
  381. "journal/conference_name": str,
  382. "volume/issue/page_numbers": str,
  383. "doi": str,
  384. "topic/keywords": str,
  385. "abstract": str,
  386. },
  387. "social_media_post": {
  388. "platform": str,
  389. "author/username": str,
  390. "publish_date": str,
  391. "post_url": str,
  392. "topic/tags": str,
  393. },
  394. "wikipedia_entry": {
  395. "title": str,
  396. "language": str,
  397. "web_page_url": str,
  398. "last_edit_date": str,
  399. "editor/contributor": str,
  400. "summary/introduction": str,
  401. },
  402. "personal_document": {
  403. "title": str,
  404. "author": str,
  405. "creation_date": str,
  406. "last_modified_date": str,
  407. "document_type": str,
  408. "tags/category": str,
  409. },
  410. "business_document": {
  411. "title": str,
  412. "author": str,
  413. "creation_date": str,
  414. "last_modified_date": str,
  415. "document_type": str,
  416. "department/team": str,
  417. },
  418. "im_chat_log": {
  419. "chat_platform": str,
  420. "chat_participants/group_name": str,
  421. "start_date": str,
  422. "end_date": str,
  423. "summary": str,
  424. },
  425. "synced_from_notion": {
  426. "title": str,
  427. "language": str,
  428. "author/creator": str,
  429. "creation_date": str,
  430. "last_modified_date": str,
  431. "notion_page_link": str,
  432. "category/tags": str,
  433. "description": str,
  434. },
  435. "synced_from_github": {
  436. "repository_name": str,
  437. "repository_description": str,
  438. "repository_owner/organization": str,
  439. "code_filename": str,
  440. "code_file_path": str,
  441. "programming_language": str,
  442. "github_link": str,
  443. "open_source_license": str,
  444. "commit_date": str,
  445. "commit_author": str,
  446. },
  447. "others": dict
  448. }
  449. @staticmethod
  450. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  451. document = db.session.query(Document).filter(
  452. Document.id == document_id,
  453. Document.dataset_id == dataset_id
  454. ).first()
  455. return document
  456. @staticmethod
  457. def get_document_by_id(document_id: str) -> Optional[Document]:
  458. document = db.session.query(Document).filter(
  459. Document.id == document_id
  460. ).first()
  461. return document
  462. @staticmethod
  463. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  464. documents = db.session.query(Document).filter(
  465. Document.dataset_id == dataset_id,
  466. Document.enabled == True
  467. ).all()
  468. return documents
  469. @staticmethod
  470. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  471. documents = db.session.query(Document).filter(
  472. Document.dataset_id == dataset_id,
  473. Document.indexing_status.in_(['error', 'paused'])
  474. ).all()
  475. return documents
  476. @staticmethod
  477. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  478. documents = db.session.query(Document).filter(
  479. Document.batch == batch,
  480. Document.dataset_id == dataset_id,
  481. Document.tenant_id == current_user.current_tenant_id
  482. ).all()
  483. return documents
  484. @staticmethod
  485. def get_document_file_detail(file_id: str):
  486. file_detail = db.session.query(UploadFile). \
  487. filter(UploadFile.id == file_id). \
  488. one_or_none()
  489. return file_detail
  490. @staticmethod
  491. def check_archived(document):
  492. if document.archived:
  493. return True
  494. else:
  495. return False
  496. @staticmethod
  497. def delete_document(document):
  498. # trigger document_was_deleted signal
  499. file_id = None
  500. if document.data_source_type == 'upload_file':
  501. if document.data_source_info:
  502. data_source_info = document.data_source_info_dict
  503. if data_source_info and 'upload_file_id' in data_source_info:
  504. file_id = data_source_info['upload_file_id']
  505. document_was_deleted.send(document.id, dataset_id=document.dataset_id,
  506. doc_form=document.doc_form, file_id=file_id)
  507. db.session.delete(document)
  508. db.session.commit()
  509. @staticmethod
  510. def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
  511. dataset = DatasetService.get_dataset(dataset_id)
  512. if not dataset:
  513. raise ValueError('Dataset not found.')
  514. document = DocumentService.get_document(dataset_id, document_id)
  515. if not document:
  516. raise ValueError('Document not found.')
  517. if document.tenant_id != current_user.current_tenant_id:
  518. raise ValueError('No permission.')
  519. document.name = name
  520. db.session.add(document)
  521. db.session.commit()
  522. return document
  523. @staticmethod
  524. def pause_document(document):
  525. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  526. raise DocumentIndexingError()
  527. # update document to be paused
  528. document.is_paused = True
  529. document.paused_by = current_user.id
  530. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  531. db.session.add(document)
  532. db.session.commit()
  533. # set document paused flag
  534. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  535. redis_client.setnx(indexing_cache_key, "True")
  536. @staticmethod
  537. def recover_document(document):
  538. if not document.is_paused:
  539. raise DocumentIndexingError()
  540. # update document to be recover
  541. document.is_paused = False
  542. document.paused_by = None
  543. document.paused_at = None
  544. db.session.add(document)
  545. db.session.commit()
  546. # delete paused flag
  547. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  548. redis_client.delete(indexing_cache_key)
  549. # trigger async task
  550. recover_document_indexing_task.delay(document.dataset_id, document.id)
  551. @staticmethod
  552. def retry_document(dataset_id: str, documents: list[Document]):
  553. for document in documents:
  554. # add retry flag
  555. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  556. cache_result = redis_client.get(retry_indexing_cache_key)
  557. if cache_result is not None:
  558. raise ValueError("Document is being retried, please try again later")
  559. # retry document indexing
  560. document.indexing_status = 'waiting'
  561. db.session.add(document)
  562. db.session.commit()
  563. redis_client.setex(retry_indexing_cache_key, 600, 1)
  564. # trigger async task
  565. document_ids = [document.id for document in documents]
  566. retry_document_indexing_task.delay(dataset_id, document_ids)
  567. @staticmethod
  568. def sync_website_document(dataset_id: str, document: Document):
  569. # add sync flag
  570. sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
  571. cache_result = redis_client.get(sync_indexing_cache_key)
  572. if cache_result is not None:
  573. raise ValueError("Document is being synced, please try again later")
  574. # sync document indexing
  575. document.indexing_status = 'waiting'
  576. data_source_info = document.data_source_info_dict
  577. data_source_info['mode'] = 'scrape'
  578. document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
  579. db.session.add(document)
  580. db.session.commit()
  581. redis_client.setex(sync_indexing_cache_key, 600, 1)
  582. sync_website_document_indexing_task.delay(dataset_id, document.id)
  583. @staticmethod
  584. def get_documents_position(dataset_id):
  585. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  586. if document:
  587. return document.position + 1
  588. else:
  589. return 1
  590. @staticmethod
  591. def save_document_with_dataset_id(
  592. dataset: Dataset, document_data: dict,
  593. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  594. created_from: str = 'web'
  595. ):
  596. # check document limit
  597. features = FeatureService.get_features(current_user.current_tenant_id)
  598. if features.billing.enabled:
  599. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  600. count = 0
  601. if document_data["data_source"]["type"] == "upload_file":
  602. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  603. count = len(upload_file_list)
  604. elif document_data["data_source"]["type"] == "notion_import":
  605. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  606. for notion_info in notion_info_list:
  607. count = count + len(notion_info['pages'])
  608. elif document_data["data_source"]["type"] == "website_crawl":
  609. website_info = document_data["data_source"]['info_list']['website_info_list']
  610. count = len(website_info['urls'])
  611. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  612. if count > batch_upload_limit:
  613. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  614. DocumentService.check_documents_upload_quota(count, features)
  615. # if dataset is empty, update dataset data_source_type
  616. if not dataset.data_source_type:
  617. dataset.data_source_type = document_data["data_source"]["type"]
  618. if not dataset.indexing_technique:
  619. if 'indexing_technique' not in document_data \
  620. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  621. raise ValueError("Indexing technique is required")
  622. dataset.indexing_technique = document_data["indexing_technique"]
  623. if document_data["indexing_technique"] == 'high_quality':
  624. model_manager = ModelManager()
  625. embedding_model = model_manager.get_default_model_instance(
  626. tenant_id=current_user.current_tenant_id,
  627. model_type=ModelType.TEXT_EMBEDDING
  628. )
  629. dataset.embedding_model = embedding_model.model
  630. dataset.embedding_model_provider = embedding_model.provider
  631. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  632. embedding_model.provider,
  633. embedding_model.model
  634. )
  635. dataset.collection_binding_id = dataset_collection_binding.id
  636. if not dataset.retrieval_model:
  637. default_retrieval_model = {
  638. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  639. 'reranking_enable': False,
  640. 'reranking_model': {
  641. 'reranking_provider_name': '',
  642. 'reranking_model_name': ''
  643. },
  644. 'top_k': 2,
  645. 'score_threshold_enabled': False
  646. }
  647. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  648. 'retrieval_model'
  649. ) else default_retrieval_model
  650. documents = []
  651. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  652. if document_data.get("original_document_id"):
  653. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  654. documents.append(document)
  655. else:
  656. # save process rule
  657. if not dataset_process_rule:
  658. process_rule = document_data["process_rule"]
  659. if process_rule["mode"] == "custom":
  660. dataset_process_rule = DatasetProcessRule(
  661. dataset_id=dataset.id,
  662. mode=process_rule["mode"],
  663. rules=json.dumps(process_rule["rules"]),
  664. created_by=account.id
  665. )
  666. elif process_rule["mode"] == "automatic":
  667. dataset_process_rule = DatasetProcessRule(
  668. dataset_id=dataset.id,
  669. mode=process_rule["mode"],
  670. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  671. created_by=account.id
  672. )
  673. db.session.add(dataset_process_rule)
  674. db.session.commit()
  675. position = DocumentService.get_documents_position(dataset.id)
  676. document_ids = []
  677. duplicate_document_ids = []
  678. if document_data["data_source"]["type"] == "upload_file":
  679. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  680. for file_id in upload_file_list:
  681. file = db.session.query(UploadFile).filter(
  682. UploadFile.tenant_id == dataset.tenant_id,
  683. UploadFile.id == file_id
  684. ).first()
  685. # raise error if file not found
  686. if not file:
  687. raise FileNotExistsError()
  688. file_name = file.name
  689. data_source_info = {
  690. "upload_file_id": file_id,
  691. }
  692. # check duplicate
  693. if document_data.get('duplicate', False):
  694. document = Document.query.filter_by(
  695. dataset_id=dataset.id,
  696. tenant_id=current_user.current_tenant_id,
  697. data_source_type='upload_file',
  698. enabled=True,
  699. name=file_name
  700. ).first()
  701. if document:
  702. document.dataset_process_rule_id = dataset_process_rule.id
  703. document.updated_at = datetime.datetime.utcnow()
  704. document.created_from = created_from
  705. document.doc_form = document_data['doc_form']
  706. document.doc_language = document_data['doc_language']
  707. document.data_source_info = json.dumps(data_source_info)
  708. document.batch = batch
  709. document.indexing_status = 'waiting'
  710. db.session.add(document)
  711. documents.append(document)
  712. duplicate_document_ids.append(document.id)
  713. continue
  714. document = DocumentService.build_document(
  715. dataset, dataset_process_rule.id,
  716. document_data["data_source"]["type"],
  717. document_data["doc_form"],
  718. document_data["doc_language"],
  719. data_source_info, created_from, position,
  720. account, file_name, batch
  721. )
  722. db.session.add(document)
  723. db.session.flush()
  724. document_ids.append(document.id)
  725. documents.append(document)
  726. position += 1
  727. elif document_data["data_source"]["type"] == "notion_import":
  728. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  729. exist_page_ids = []
  730. exist_document = {}
  731. documents = Document.query.filter_by(
  732. dataset_id=dataset.id,
  733. tenant_id=current_user.current_tenant_id,
  734. data_source_type='notion_import',
  735. enabled=True
  736. ).all()
  737. if documents:
  738. for document in documents:
  739. data_source_info = json.loads(document.data_source_info)
  740. exist_page_ids.append(data_source_info['notion_page_id'])
  741. exist_document[data_source_info['notion_page_id']] = document.id
  742. for notion_info in notion_info_list:
  743. workspace_id = notion_info['workspace_id']
  744. data_source_binding = DataSourceOauthBinding.query.filter(
  745. db.and_(
  746. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  747. DataSourceOauthBinding.provider == 'notion',
  748. DataSourceOauthBinding.disabled == False,
  749. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  750. )
  751. ).first()
  752. if not data_source_binding:
  753. raise ValueError('Data source binding not found.')
  754. for page in notion_info['pages']:
  755. if page['page_id'] not in exist_page_ids:
  756. data_source_info = {
  757. "notion_workspace_id": workspace_id,
  758. "notion_page_id": page['page_id'],
  759. "notion_page_icon": page['page_icon'],
  760. "type": page['type']
  761. }
  762. document = DocumentService.build_document(
  763. dataset, dataset_process_rule.id,
  764. document_data["data_source"]["type"],
  765. document_data["doc_form"],
  766. document_data["doc_language"],
  767. data_source_info, created_from, position,
  768. account, page['page_name'], batch
  769. )
  770. db.session.add(document)
  771. db.session.flush()
  772. document_ids.append(document.id)
  773. documents.append(document)
  774. position += 1
  775. else:
  776. exist_document.pop(page['page_id'])
  777. # delete not selected documents
  778. if len(exist_document) > 0:
  779. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  780. elif document_data["data_source"]["type"] == "website_crawl":
  781. website_info = document_data["data_source"]['info_list']['website_info_list']
  782. urls = website_info['urls']
  783. for url in urls:
  784. data_source_info = {
  785. 'url': url,
  786. 'provider': website_info['provider'],
  787. 'job_id': website_info['job_id'],
  788. 'only_main_content': website_info.get('only_main_content', False),
  789. 'mode': 'crawl',
  790. }
  791. if len(url) > 255:
  792. document_name = url[:200] + '...'
  793. else:
  794. document_name = url
  795. document = DocumentService.build_document(
  796. dataset, dataset_process_rule.id,
  797. document_data["data_source"]["type"],
  798. document_data["doc_form"],
  799. document_data["doc_language"],
  800. data_source_info, created_from, position,
  801. account, document_name, batch
  802. )
  803. db.session.add(document)
  804. db.session.flush()
  805. document_ids.append(document.id)
  806. documents.append(document)
  807. position += 1
  808. db.session.commit()
  809. # trigger async task
  810. if document_ids:
  811. document_indexing_task.delay(dataset.id, document_ids)
  812. if duplicate_document_ids:
  813. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  814. return documents, batch
  815. @staticmethod
  816. def check_documents_upload_quota(count: int, features: FeatureModel):
  817. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  818. if count > can_upload_size:
  819. raise ValueError(
  820. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.'
  821. )
  822. @staticmethod
  823. def build_document(
  824. dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  825. document_language: str, data_source_info: dict, created_from: str, position: int,
  826. account: Account,
  827. name: str, batch: str
  828. ):
  829. document = Document(
  830. tenant_id=dataset.tenant_id,
  831. dataset_id=dataset.id,
  832. position=position,
  833. data_source_type=data_source_type,
  834. data_source_info=json.dumps(data_source_info),
  835. dataset_process_rule_id=process_rule_id,
  836. batch=batch,
  837. name=name,
  838. created_from=created_from,
  839. created_by=account.id,
  840. doc_form=document_form,
  841. doc_language=document_language
  842. )
  843. return document
  844. @staticmethod
  845. def get_tenant_documents_count():
  846. documents_count = Document.query.filter(
  847. Document.completed_at.isnot(None),
  848. Document.enabled == True,
  849. Document.archived == False,
  850. Document.tenant_id == current_user.current_tenant_id
  851. ).count()
  852. return documents_count
  853. @staticmethod
  854. def update_document_with_dataset_id(
  855. dataset: Dataset, document_data: dict,
  856. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  857. created_from: str = 'web'
  858. ):
  859. DatasetService.check_dataset_model_setting(dataset)
  860. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  861. if document.display_status != 'available':
  862. raise ValueError("Document is not available")
  863. # update document name
  864. if document_data.get('name'):
  865. document.name = document_data['name']
  866. # save process rule
  867. if document_data.get('process_rule'):
  868. process_rule = document_data["process_rule"]
  869. if process_rule["mode"] == "custom":
  870. dataset_process_rule = DatasetProcessRule(
  871. dataset_id=dataset.id,
  872. mode=process_rule["mode"],
  873. rules=json.dumps(process_rule["rules"]),
  874. created_by=account.id
  875. )
  876. elif process_rule["mode"] == "automatic":
  877. dataset_process_rule = DatasetProcessRule(
  878. dataset_id=dataset.id,
  879. mode=process_rule["mode"],
  880. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  881. created_by=account.id
  882. )
  883. db.session.add(dataset_process_rule)
  884. db.session.commit()
  885. document.dataset_process_rule_id = dataset_process_rule.id
  886. # update document data source
  887. if document_data.get('data_source'):
  888. file_name = ''
  889. data_source_info = {}
  890. if document_data["data_source"]["type"] == "upload_file":
  891. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  892. for file_id in upload_file_list:
  893. file = db.session.query(UploadFile).filter(
  894. UploadFile.tenant_id == dataset.tenant_id,
  895. UploadFile.id == file_id
  896. ).first()
  897. # raise error if file not found
  898. if not file:
  899. raise FileNotExistsError()
  900. file_name = file.name
  901. data_source_info = {
  902. "upload_file_id": file_id,
  903. }
  904. elif document_data["data_source"]["type"] == "notion_import":
  905. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  906. for notion_info in notion_info_list:
  907. workspace_id = notion_info['workspace_id']
  908. data_source_binding = DataSourceOauthBinding.query.filter(
  909. db.and_(
  910. DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
  911. DataSourceOauthBinding.provider == 'notion',
  912. DataSourceOauthBinding.disabled == False,
  913. DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  914. )
  915. ).first()
  916. if not data_source_binding:
  917. raise ValueError('Data source binding not found.')
  918. for page in notion_info['pages']:
  919. data_source_info = {
  920. "notion_workspace_id": workspace_id,
  921. "notion_page_id": page['page_id'],
  922. "notion_page_icon": page['page_icon'],
  923. "type": page['type']
  924. }
  925. elif document_data["data_source"]["type"] == "website_crawl":
  926. website_info = document_data["data_source"]['info_list']['website_info_list']
  927. urls = website_info['urls']
  928. for url in urls:
  929. data_source_info = {
  930. 'url': url,
  931. 'provider': website_info['provider'],
  932. 'job_id': website_info['job_id'],
  933. 'only_main_content': website_info.get('only_main_content', False),
  934. 'mode': 'crawl',
  935. }
  936. document.data_source_type = document_data["data_source"]["type"]
  937. document.data_source_info = json.dumps(data_source_info)
  938. document.name = file_name
  939. # update document to be waiting
  940. document.indexing_status = 'waiting'
  941. document.completed_at = None
  942. document.processing_started_at = None
  943. document.parsing_completed_at = None
  944. document.cleaning_completed_at = None
  945. document.splitting_completed_at = None
  946. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  947. document.created_from = created_from
  948. document.doc_form = document_data['doc_form']
  949. db.session.add(document)
  950. db.session.commit()
  951. # update document segment
  952. update_params = {
  953. DocumentSegment.status: 're_segment'
  954. }
  955. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  956. db.session.commit()
  957. # trigger async task
  958. document_indexing_update_task.delay(document.dataset_id, document.id)
  959. return document
  960. @staticmethod
  961. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  962. features = FeatureService.get_features(current_user.current_tenant_id)
  963. if features.billing.enabled:
  964. count = 0
  965. if document_data["data_source"]["type"] == "upload_file":
  966. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  967. count = len(upload_file_list)
  968. elif document_data["data_source"]["type"] == "notion_import":
  969. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  970. for notion_info in notion_info_list:
  971. count = count + len(notion_info['pages'])
  972. elif document_data["data_source"]["type"] == "website_crawl":
  973. website_info = document_data["data_source"]['info_list']['website_info_list']
  974. count = len(website_info['urls'])
  975. batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
  976. if count > batch_upload_limit:
  977. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  978. DocumentService.check_documents_upload_quota(count, features)
  979. embedding_model = None
  980. dataset_collection_binding_id = None
  981. retrieval_model = None
  982. if document_data['indexing_technique'] == 'high_quality':
  983. model_manager = ModelManager()
  984. embedding_model = model_manager.get_default_model_instance(
  985. tenant_id=current_user.current_tenant_id,
  986. model_type=ModelType.TEXT_EMBEDDING
  987. )
  988. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  989. embedding_model.provider,
  990. embedding_model.model
  991. )
  992. dataset_collection_binding_id = dataset_collection_binding.id
  993. if document_data.get('retrieval_model'):
  994. retrieval_model = document_data['retrieval_model']
  995. else:
  996. default_retrieval_model = {
  997. 'search_method': RetrievalMethod.SEMANTIC_SEARCH.value,
  998. 'reranking_enable': False,
  999. 'reranking_model': {
  1000. 'reranking_provider_name': '',
  1001. 'reranking_model_name': ''
  1002. },
  1003. 'top_k': 2,
  1004. 'score_threshold_enabled': False
  1005. }
  1006. retrieval_model = default_retrieval_model
  1007. # save dataset
  1008. dataset = Dataset(
  1009. tenant_id=tenant_id,
  1010. name='',
  1011. data_source_type=document_data["data_source"]["type"],
  1012. indexing_technique=document_data["indexing_technique"],
  1013. created_by=account.id,
  1014. embedding_model=embedding_model.model if embedding_model else None,
  1015. embedding_model_provider=embedding_model.provider if embedding_model else None,
  1016. collection_binding_id=dataset_collection_binding_id,
  1017. retrieval_model=retrieval_model
  1018. )
  1019. db.session.add(dataset)
  1020. db.session.flush()
  1021. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  1022. cut_length = 18
  1023. cut_name = documents[0].name[:cut_length]
  1024. dataset.name = cut_name + '...'
  1025. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  1026. db.session.commit()
  1027. return dataset, documents, batch
  1028. @classmethod
  1029. def document_create_args_validate(cls, args: dict):
  1030. if 'original_document_id' not in args or not args['original_document_id']:
  1031. DocumentService.data_source_args_validate(args)
  1032. DocumentService.process_rule_args_validate(args)
  1033. else:
  1034. if ('data_source' not in args and not args['data_source']) \
  1035. and ('process_rule' not in args and not args['process_rule']):
  1036. raise ValueError("Data source or Process rule is required")
  1037. else:
  1038. if args.get('data_source'):
  1039. DocumentService.data_source_args_validate(args)
  1040. if args.get('process_rule'):
  1041. DocumentService.process_rule_args_validate(args)
  1042. @classmethod
  1043. def data_source_args_validate(cls, args: dict):
  1044. if 'data_source' not in args or not args['data_source']:
  1045. raise ValueError("Data source is required")
  1046. if not isinstance(args['data_source'], dict):
  1047. raise ValueError("Data source is invalid")
  1048. if 'type' not in args['data_source'] or not args['data_source']['type']:
  1049. raise ValueError("Data source type is required")
  1050. if args['data_source']['type'] not in Document.DATA_SOURCES:
  1051. raise ValueError("Data source type is invalid")
  1052. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  1053. raise ValueError("Data source info is required")
  1054. if args['data_source']['type'] == 'upload_file':
  1055. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  1056. 'file_info_list']:
  1057. raise ValueError("File source info is required")
  1058. if args['data_source']['type'] == 'notion_import':
  1059. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  1060. 'notion_info_list']:
  1061. raise ValueError("Notion source info is required")
  1062. if args['data_source']['type'] == 'website_crawl':
  1063. if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  1064. 'website_info_list']:
  1065. raise ValueError("Website source info is required")
  1066. @classmethod
  1067. def process_rule_args_validate(cls, args: dict):
  1068. if 'process_rule' not in args or not args['process_rule']:
  1069. raise ValueError("Process rule is required")
  1070. if not isinstance(args['process_rule'], dict):
  1071. raise ValueError("Process rule is invalid")
  1072. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  1073. raise ValueError("Process rule mode is required")
  1074. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  1075. raise ValueError("Process rule mode is invalid")
  1076. if args['process_rule']['mode'] == 'automatic':
  1077. args['process_rule']['rules'] = {}
  1078. else:
  1079. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  1080. raise ValueError("Process rule rules is required")
  1081. if not isinstance(args['process_rule']['rules'], dict):
  1082. raise ValueError("Process rule rules is invalid")
  1083. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  1084. or args['process_rule']['rules']['pre_processing_rules'] is None:
  1085. raise ValueError("Process rule pre_processing_rules is required")
  1086. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  1087. raise ValueError("Process rule pre_processing_rules is invalid")
  1088. unique_pre_processing_rule_dicts = {}
  1089. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  1090. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  1091. raise ValueError("Process rule pre_processing_rules id is required")
  1092. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1093. raise ValueError("Process rule pre_processing_rules id is invalid")
  1094. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  1095. raise ValueError("Process rule pre_processing_rules enabled is required")
  1096. if not isinstance(pre_processing_rule['enabled'], bool):
  1097. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1098. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  1099. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  1100. if 'segmentation' not in args['process_rule']['rules'] \
  1101. or args['process_rule']['rules']['segmentation'] is None:
  1102. raise ValueError("Process rule segmentation is required")
  1103. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  1104. raise ValueError("Process rule segmentation is invalid")
  1105. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  1106. or not args['process_rule']['rules']['segmentation']['separator']:
  1107. raise ValueError("Process rule segmentation separator is required")
  1108. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  1109. raise ValueError("Process rule segmentation separator is invalid")
  1110. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1111. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1112. raise ValueError("Process rule segmentation max_tokens is required")
  1113. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1114. raise ValueError("Process rule segmentation max_tokens is invalid")
  1115. @classmethod
  1116. def estimate_args_validate(cls, args: dict):
  1117. if 'info_list' not in args or not args['info_list']:
  1118. raise ValueError("Data source info is required")
  1119. if not isinstance(args['info_list'], dict):
  1120. raise ValueError("Data info is invalid")
  1121. if 'process_rule' not in args or not args['process_rule']:
  1122. raise ValueError("Process rule is required")
  1123. if not isinstance(args['process_rule'], dict):
  1124. raise ValueError("Process rule is invalid")
  1125. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  1126. raise ValueError("Process rule mode is required")
  1127. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  1128. raise ValueError("Process rule mode is invalid")
  1129. if args['process_rule']['mode'] == 'automatic':
  1130. args['process_rule']['rules'] = {}
  1131. else:
  1132. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  1133. raise ValueError("Process rule rules is required")
  1134. if not isinstance(args['process_rule']['rules'], dict):
  1135. raise ValueError("Process rule rules is invalid")
  1136. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  1137. or args['process_rule']['rules']['pre_processing_rules'] is None:
  1138. raise ValueError("Process rule pre_processing_rules is required")
  1139. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  1140. raise ValueError("Process rule pre_processing_rules is invalid")
  1141. unique_pre_processing_rule_dicts = {}
  1142. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  1143. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  1144. raise ValueError("Process rule pre_processing_rules id is required")
  1145. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  1146. raise ValueError("Process rule pre_processing_rules id is invalid")
  1147. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  1148. raise ValueError("Process rule pre_processing_rules enabled is required")
  1149. if not isinstance(pre_processing_rule['enabled'], bool):
  1150. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  1151. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  1152. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  1153. if 'segmentation' not in args['process_rule']['rules'] \
  1154. or args['process_rule']['rules']['segmentation'] is None:
  1155. raise ValueError("Process rule segmentation is required")
  1156. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  1157. raise ValueError("Process rule segmentation is invalid")
  1158. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  1159. or not args['process_rule']['rules']['segmentation']['separator']:
  1160. raise ValueError("Process rule segmentation separator is required")
  1161. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  1162. raise ValueError("Process rule segmentation separator is invalid")
  1163. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  1164. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  1165. raise ValueError("Process rule segmentation max_tokens is required")
  1166. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  1167. raise ValueError("Process rule segmentation max_tokens is invalid")
  1168. class SegmentService:
  1169. @classmethod
  1170. def segment_create_args_validate(cls, args: dict, document: Document):
  1171. if document.doc_form == 'qa_model':
  1172. if 'answer' not in args or not args['answer']:
  1173. raise ValueError("Answer is required")
  1174. if not args['answer'].strip():
  1175. raise ValueError("Answer is empty")
  1176. if 'content' not in args or not args['content'] or not args['content'].strip():
  1177. raise ValueError("Content is empty")
  1178. @classmethod
  1179. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  1180. content = args['content']
  1181. doc_id = str(uuid.uuid4())
  1182. segment_hash = helper.generate_text_hash(content)
  1183. tokens = 0
  1184. if dataset.indexing_technique == 'high_quality':
  1185. model_manager = ModelManager()
  1186. embedding_model = model_manager.get_model_instance(
  1187. tenant_id=current_user.current_tenant_id,
  1188. provider=dataset.embedding_model_provider,
  1189. model_type=ModelType.TEXT_EMBEDDING,
  1190. model=dataset.embedding_model
  1191. )
  1192. # calc embedding use tokens
  1193. tokens = embedding_model.get_text_embedding_num_tokens(
  1194. texts=[content]
  1195. )
  1196. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1197. with redis_client.lock(lock_name, timeout=600):
  1198. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1199. DocumentSegment.document_id == document.id
  1200. ).scalar()
  1201. segment_document = DocumentSegment(
  1202. tenant_id=current_user.current_tenant_id,
  1203. dataset_id=document.dataset_id,
  1204. document_id=document.id,
  1205. index_node_id=doc_id,
  1206. index_node_hash=segment_hash,
  1207. position=max_position + 1 if max_position else 1,
  1208. content=content,
  1209. word_count=len(content),
  1210. tokens=tokens,
  1211. status='completed',
  1212. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1213. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1214. created_by=current_user.id
  1215. )
  1216. if document.doc_form == 'qa_model':
  1217. segment_document.answer = args['answer']
  1218. db.session.add(segment_document)
  1219. db.session.commit()
  1220. # save vector index
  1221. try:
  1222. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1223. except Exception as e:
  1224. logging.exception("create segment index failed")
  1225. segment_document.enabled = False
  1226. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1227. segment_document.status = 'error'
  1228. segment_document.error = str(e)
  1229. db.session.commit()
  1230. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1231. return segment
  1232. @classmethod
  1233. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1234. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1235. with redis_client.lock(lock_name, timeout=600):
  1236. embedding_model = None
  1237. if dataset.indexing_technique == 'high_quality':
  1238. model_manager = ModelManager()
  1239. embedding_model = model_manager.get_model_instance(
  1240. tenant_id=current_user.current_tenant_id,
  1241. provider=dataset.embedding_model_provider,
  1242. model_type=ModelType.TEXT_EMBEDDING,
  1243. model=dataset.embedding_model
  1244. )
  1245. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1246. DocumentSegment.document_id == document.id
  1247. ).scalar()
  1248. pre_segment_data_list = []
  1249. segment_data_list = []
  1250. keywords_list = []
  1251. for segment_item in segments:
  1252. content = segment_item['content']
  1253. doc_id = str(uuid.uuid4())
  1254. segment_hash = helper.generate_text_hash(content)
  1255. tokens = 0
  1256. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1257. # calc embedding use tokens
  1258. tokens = embedding_model.get_text_embedding_num_tokens(
  1259. texts=[content]
  1260. )
  1261. segment_document = DocumentSegment(
  1262. tenant_id=current_user.current_tenant_id,
  1263. dataset_id=document.dataset_id,
  1264. document_id=document.id,
  1265. index_node_id=doc_id,
  1266. index_node_hash=segment_hash,
  1267. position=max_position + 1 if max_position else 1,
  1268. content=content,
  1269. word_count=len(content),
  1270. tokens=tokens,
  1271. status='completed',
  1272. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1273. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1274. created_by=current_user.id
  1275. )
  1276. if document.doc_form == 'qa_model':
  1277. segment_document.answer = segment_item['answer']
  1278. db.session.add(segment_document)
  1279. segment_data_list.append(segment_document)
  1280. pre_segment_data_list.append(segment_document)
  1281. if 'keywords' in segment_item:
  1282. keywords_list.append(segment_item['keywords'])
  1283. else:
  1284. keywords_list.append(None)
  1285. try:
  1286. # save vector index
  1287. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1288. except Exception as e:
  1289. logging.exception("create segment index failed")
  1290. for segment_document in segment_data_list:
  1291. segment_document.enabled = False
  1292. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1293. segment_document.status = 'error'
  1294. segment_document.error = str(e)
  1295. db.session.commit()
  1296. return segment_data_list
  1297. @classmethod
  1298. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1299. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1300. cache_result = redis_client.get(indexing_cache_key)
  1301. if cache_result is not None:
  1302. raise ValueError("Segment is indexing, please try again later")
  1303. if 'enabled' in args and args['enabled'] is not None:
  1304. action = args['enabled']
  1305. if segment.enabled != action:
  1306. if not action:
  1307. segment.enabled = action
  1308. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1309. segment.disabled_by = current_user.id
  1310. db.session.add(segment)
  1311. db.session.commit()
  1312. # Set cache to prevent indexing the same segment multiple times
  1313. redis_client.setex(indexing_cache_key, 600, 1)
  1314. disable_segment_from_index_task.delay(segment.id)
  1315. return segment
  1316. if not segment.enabled:
  1317. if 'enabled' in args and args['enabled'] is not None:
  1318. if not args['enabled']:
  1319. raise ValueError("Can't update disabled segment")
  1320. else:
  1321. raise ValueError("Can't update disabled segment")
  1322. try:
  1323. content = args['content']
  1324. if segment.content == content:
  1325. if document.doc_form == 'qa_model':
  1326. segment.answer = args['answer']
  1327. if args.get('keywords'):
  1328. segment.keywords = args['keywords']
  1329. segment.enabled = True
  1330. segment.disabled_at = None
  1331. segment.disabled_by = None
  1332. db.session.add(segment)
  1333. db.session.commit()
  1334. # update segment index task
  1335. if 'keywords' in args:
  1336. keyword = Keyword(dataset)
  1337. keyword.delete_by_ids([segment.index_node_id])
  1338. document = RAGDocument(
  1339. page_content=segment.content,
  1340. metadata={
  1341. "doc_id": segment.index_node_id,
  1342. "doc_hash": segment.index_node_hash,
  1343. "document_id": segment.document_id,
  1344. "dataset_id": segment.dataset_id,
  1345. }
  1346. )
  1347. keyword.add_texts([document], keywords_list=[args['keywords']])
  1348. else:
  1349. segment_hash = helper.generate_text_hash(content)
  1350. tokens = 0
  1351. if dataset.indexing_technique == 'high_quality':
  1352. model_manager = ModelManager()
  1353. embedding_model = model_manager.get_model_instance(
  1354. tenant_id=current_user.current_tenant_id,
  1355. provider=dataset.embedding_model_provider,
  1356. model_type=ModelType.TEXT_EMBEDDING,
  1357. model=dataset.embedding_model
  1358. )
  1359. # calc embedding use tokens
  1360. tokens = embedding_model.get_text_embedding_num_tokens(
  1361. texts=[content]
  1362. )
  1363. segment.content = content
  1364. segment.index_node_hash = segment_hash
  1365. segment.word_count = len(content)
  1366. segment.tokens = tokens
  1367. segment.status = 'completed'
  1368. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1369. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1370. segment.updated_by = current_user.id
  1371. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1372. segment.enabled = True
  1373. segment.disabled_at = None
  1374. segment.disabled_by = None
  1375. if document.doc_form == 'qa_model':
  1376. segment.answer = args['answer']
  1377. db.session.add(segment)
  1378. db.session.commit()
  1379. # update segment vector index
  1380. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1381. except Exception as e:
  1382. logging.exception("update segment index failed")
  1383. segment.enabled = False
  1384. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1385. segment.status = 'error'
  1386. segment.error = str(e)
  1387. db.session.commit()
  1388. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1389. return segment
  1390. @classmethod
  1391. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1392. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1393. cache_result = redis_client.get(indexing_cache_key)
  1394. if cache_result is not None:
  1395. raise ValueError("Segment is deleting.")
  1396. # enabled segment need to delete index
  1397. if segment.enabled:
  1398. # send delete segment index task
  1399. redis_client.setex(indexing_cache_key, 600, 1)
  1400. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1401. db.session.delete(segment)
  1402. db.session.commit()
  1403. class DatasetCollectionBindingService:
  1404. @classmethod
  1405. def get_dataset_collection_binding(
  1406. cls, provider_name: str, model_name: str,
  1407. collection_type: str = 'dataset'
  1408. ) -> DatasetCollectionBinding:
  1409. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1410. filter(
  1411. DatasetCollectionBinding.provider_name == provider_name,
  1412. DatasetCollectionBinding.model_name == model_name,
  1413. DatasetCollectionBinding.type == collection_type
  1414. ). \
  1415. order_by(DatasetCollectionBinding.created_at). \
  1416. first()
  1417. if not dataset_collection_binding:
  1418. dataset_collection_binding = DatasetCollectionBinding(
  1419. provider_name=provider_name,
  1420. model_name=model_name,
  1421. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1422. type=collection_type
  1423. )
  1424. db.session.add(dataset_collection_binding)
  1425. db.session.commit()
  1426. return dataset_collection_binding
  1427. @classmethod
  1428. def get_dataset_collection_binding_by_id_and_type(
  1429. cls, collection_binding_id: str,
  1430. collection_type: str = 'dataset'
  1431. ) -> DatasetCollectionBinding:
  1432. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1433. filter(
  1434. DatasetCollectionBinding.id == collection_binding_id,
  1435. DatasetCollectionBinding.type == collection_type
  1436. ). \
  1437. order_by(DatasetCollectionBinding.created_at). \
  1438. first()
  1439. return dataset_collection_binding
  1440. class DatasetPermissionService:
  1441. @classmethod
  1442. def get_dataset_partial_member_list(cls, dataset_id):
  1443. user_list_query = db.session.query(
  1444. DatasetPermission.account_id,
  1445. ).filter(
  1446. DatasetPermission.dataset_id == dataset_id
  1447. ).all()
  1448. user_list = []
  1449. for user in user_list_query:
  1450. user_list.append(user.account_id)
  1451. return user_list
  1452. @classmethod
  1453. def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
  1454. try:
  1455. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1456. permissions = []
  1457. for user in user_list:
  1458. permission = DatasetPermission(
  1459. tenant_id=tenant_id,
  1460. dataset_id=dataset_id,
  1461. account_id=user['user_id'],
  1462. )
  1463. permissions.append(permission)
  1464. db.session.add_all(permissions)
  1465. db.session.commit()
  1466. except Exception as e:
  1467. db.session.rollback()
  1468. raise e
  1469. @classmethod
  1470. def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
  1471. if not user.is_dataset_editor:
  1472. raise NoPermissionError('User does not have permission to edit this dataset.')
  1473. if user.is_dataset_operator and dataset.permission != requested_permission:
  1474. raise NoPermissionError('Dataset operators cannot change the dataset permissions.')
  1475. if user.is_dataset_operator and requested_permission == 'partial_members':
  1476. if not requested_partial_member_list:
  1477. raise ValueError('Partial member list is required when setting to partial members.')
  1478. local_member_list = cls.get_dataset_partial_member_list(dataset.id)
  1479. request_member_list = [user['user_id'] for user in requested_partial_member_list]
  1480. if set(local_member_list) != set(request_member_list):
  1481. raise ValueError('Dataset operators cannot change the dataset permissions.')
  1482. @classmethod
  1483. def clear_partial_member_list(cls, dataset_id):
  1484. try:
  1485. db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
  1486. db.session.commit()
  1487. except Exception as e:
  1488. db.session.rollback()
  1489. raise e