dataset_service.py 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. import uuid
  7. from typing import Optional, List
  8. from flask import current_app
  9. from sqlalchemy import func
  10. from core.model_providers.model_factory import ModelFactory
  11. from extensions.ext_redis import redis_client
  12. from flask_login import current_user
  13. from events.dataset_event import dataset_was_deleted
  14. from events.document_event import document_was_deleted
  15. from extensions.ext_database import db
  16. from libs import helper
  17. from models.account import Account
  18. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment
  19. from models.model import UploadFile
  20. from models.source import DataSourceBinding
  21. from services.errors.account import NoPermissionError
  22. from services.errors.dataset import DatasetNameDuplicateError
  23. from services.errors.document import DocumentIndexingError
  24. from services.errors.file import FileNotExistsError
  25. from tasks.clean_notion_document_task import clean_notion_document_task
  26. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  27. from tasks.document_indexing_task import document_indexing_task
  28. from tasks.document_indexing_update_task import document_indexing_update_task
  29. from tasks.create_segment_to_index_task import create_segment_to_index_task
  30. from tasks.update_segment_index_task import update_segment_index_task
  31. from tasks.update_segment_keyword_index_task\
  32. import update_segment_keyword_index_task
  33. class DatasetService:
  34. @staticmethod
  35. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  36. if user:
  37. permission_filter = db.or_(Dataset.created_by == user.id,
  38. Dataset.permission == 'all_team_members')
  39. else:
  40. permission_filter = Dataset.permission == 'all_team_members'
  41. datasets = Dataset.query.filter(
  42. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  43. .order_by(Dataset.created_at.desc()) \
  44. .paginate(
  45. page=page,
  46. per_page=per_page,
  47. max_per_page=100,
  48. error_out=False
  49. )
  50. return datasets.items, datasets.total
  51. @staticmethod
  52. def get_process_rules(dataset_id):
  53. # get the latest process rule
  54. dataset_process_rule = db.session.query(DatasetProcessRule). \
  55. filter(DatasetProcessRule.dataset_id == dataset_id). \
  56. order_by(DatasetProcessRule.created_at.desc()). \
  57. limit(1). \
  58. one_or_none()
  59. if dataset_process_rule:
  60. mode = dataset_process_rule.mode
  61. rules = dataset_process_rule.rules_dict
  62. else:
  63. mode = DocumentService.DEFAULT_RULES['mode']
  64. rules = DocumentService.DEFAULT_RULES['rules']
  65. return {
  66. 'mode': mode,
  67. 'rules': rules
  68. }
  69. @staticmethod
  70. def get_datasets_by_ids(ids, tenant_id):
  71. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  72. Dataset.tenant_id == tenant_id).paginate(
  73. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  74. return datasets.items, datasets.total
  75. @staticmethod
  76. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  77. # check if dataset name already exists
  78. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  79. raise DatasetNameDuplicateError(
  80. f'Dataset with name {name} already exists.')
  81. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  82. # dataset = Dataset(name=name, provider=provider, config=config)
  83. dataset.created_by = account.id
  84. dataset.updated_by = account.id
  85. dataset.tenant_id = tenant_id
  86. db.session.add(dataset)
  87. db.session.commit()
  88. return dataset
  89. @staticmethod
  90. def get_dataset(dataset_id):
  91. dataset = Dataset.query.filter_by(
  92. id=dataset_id
  93. ).first()
  94. if dataset is None:
  95. return None
  96. else:
  97. return dataset
  98. @staticmethod
  99. def update_dataset(dataset_id, data, user):
  100. dataset = DatasetService.get_dataset(dataset_id)
  101. DatasetService.check_dataset_permission(dataset, user)
  102. if dataset.indexing_technique != data['indexing_technique']:
  103. # if update indexing_technique
  104. if data['indexing_technique'] == 'economy':
  105. deal_dataset_vector_index_task.delay(dataset_id, 'remove')
  106. elif data['indexing_technique'] == 'high_quality':
  107. deal_dataset_vector_index_task.delay(dataset_id, 'add')
  108. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  109. filtered_data['updated_by'] = user.id
  110. filtered_data['updated_at'] = datetime.datetime.now()
  111. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  112. db.session.commit()
  113. return dataset
  114. @staticmethod
  115. def delete_dataset(dataset_id, user):
  116. # todo: cannot delete dataset if it is being processed
  117. dataset = DatasetService.get_dataset(dataset_id)
  118. if dataset is None:
  119. return False
  120. DatasetService.check_dataset_permission(dataset, user)
  121. dataset_was_deleted.send(dataset)
  122. db.session.delete(dataset)
  123. db.session.commit()
  124. return True
  125. @staticmethod
  126. def check_dataset_permission(dataset, user):
  127. if dataset.tenant_id != user.current_tenant_id:
  128. logging.debug(
  129. f'User {user.id} does not have permission to access dataset {dataset.id}')
  130. raise NoPermissionError(
  131. 'You do not have permission to access this dataset.')
  132. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  133. logging.debug(
  134. f'User {user.id} does not have permission to access dataset {dataset.id}')
  135. raise NoPermissionError(
  136. 'You do not have permission to access this dataset.')
  137. @staticmethod
  138. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  139. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  140. .order_by(db.desc(DatasetQuery.created_at)) \
  141. .paginate(
  142. page=page, per_page=per_page, max_per_page=100, error_out=False
  143. )
  144. return dataset_queries.items, dataset_queries.total
  145. @staticmethod
  146. def get_related_apps(dataset_id: str):
  147. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  148. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  149. class DocumentService:
  150. DEFAULT_RULES = {
  151. 'mode': 'custom',
  152. 'rules': {
  153. 'pre_processing_rules': [
  154. {'id': 'remove_extra_spaces', 'enabled': True},
  155. {'id': 'remove_urls_emails', 'enabled': False}
  156. ],
  157. 'segmentation': {
  158. 'delimiter': '\n',
  159. 'max_tokens': 500
  160. }
  161. }
  162. }
  163. DOCUMENT_METADATA_SCHEMA = {
  164. "book": {
  165. "title": str,
  166. "language": str,
  167. "author": str,
  168. "publisher": str,
  169. "publication_date": str,
  170. "isbn": str,
  171. "category": str,
  172. },
  173. "web_page": {
  174. "title": str,
  175. "url": str,
  176. "language": str,
  177. "publish_date": str,
  178. "author/publisher": str,
  179. "topic/keywords": str,
  180. "description": str,
  181. },
  182. "paper": {
  183. "title": str,
  184. "language": str,
  185. "author": str,
  186. "publish_date": str,
  187. "journal/conference_name": str,
  188. "volume/issue/page_numbers": str,
  189. "doi": str,
  190. "topic/keywords": str,
  191. "abstract": str,
  192. },
  193. "social_media_post": {
  194. "platform": str,
  195. "author/username": str,
  196. "publish_date": str,
  197. "post_url": str,
  198. "topic/tags": str,
  199. },
  200. "wikipedia_entry": {
  201. "title": str,
  202. "language": str,
  203. "web_page_url": str,
  204. "last_edit_date": str,
  205. "editor/contributor": str,
  206. "summary/introduction": str,
  207. },
  208. "personal_document": {
  209. "title": str,
  210. "author": str,
  211. "creation_date": str,
  212. "last_modified_date": str,
  213. "document_type": str,
  214. "tags/category": str,
  215. },
  216. "business_document": {
  217. "title": str,
  218. "author": str,
  219. "creation_date": str,
  220. "last_modified_date": str,
  221. "document_type": str,
  222. "department/team": str,
  223. },
  224. "im_chat_log": {
  225. "chat_platform": str,
  226. "chat_participants/group_name": str,
  227. "start_date": str,
  228. "end_date": str,
  229. "summary": str,
  230. },
  231. "synced_from_notion": {
  232. "title": str,
  233. "language": str,
  234. "author/creator": str,
  235. "creation_date": str,
  236. "last_modified_date": str,
  237. "notion_page_link": str,
  238. "category/tags": str,
  239. "description": str,
  240. },
  241. "synced_from_github": {
  242. "repository_name": str,
  243. "repository_description": str,
  244. "repository_owner/organization": str,
  245. "code_filename": str,
  246. "code_file_path": str,
  247. "programming_language": str,
  248. "github_link": str,
  249. "open_source_license": str,
  250. "commit_date": str,
  251. "commit_author": str
  252. }
  253. }
  254. @staticmethod
  255. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  256. document = db.session.query(Document).filter(
  257. Document.id == document_id,
  258. Document.dataset_id == dataset_id
  259. ).first()
  260. return document
  261. @staticmethod
  262. def get_document_by_id(document_id: str) -> Optional[Document]:
  263. document = db.session.query(Document).filter(
  264. Document.id == document_id
  265. ).first()
  266. return document
  267. @staticmethod
  268. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  269. documents = db.session.query(Document).filter(
  270. Document.dataset_id == dataset_id,
  271. Document.enabled == True
  272. ).all()
  273. return documents
  274. @staticmethod
  275. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  276. documents = db.session.query(Document).filter(
  277. Document.batch == batch,
  278. Document.dataset_id == dataset_id,
  279. Document.tenant_id == current_user.current_tenant_id
  280. ).all()
  281. return documents
  282. @staticmethod
  283. def get_document_file_detail(file_id: str):
  284. file_detail = db.session.query(UploadFile). \
  285. filter(UploadFile.id == file_id). \
  286. one_or_none()
  287. return file_detail
  288. @staticmethod
  289. def check_archived(document):
  290. if document.archived:
  291. return True
  292. else:
  293. return False
  294. @staticmethod
  295. def delete_document(document):
  296. if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:
  297. raise DocumentIndexingError()
  298. # trigger document_was_deleted signal
  299. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  300. db.session.delete(document)
  301. db.session.commit()
  302. @staticmethod
  303. def pause_document(document):
  304. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  305. raise DocumentIndexingError()
  306. # update document to be paused
  307. document.is_paused = True
  308. document.paused_by = current_user.id
  309. document.paused_at = datetime.datetime.utcnow()
  310. db.session.add(document)
  311. db.session.commit()
  312. # set document paused flag
  313. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  314. redis_client.setnx(indexing_cache_key, "True")
  315. @staticmethod
  316. def recover_document(document):
  317. if not document.is_paused:
  318. raise DocumentIndexingError()
  319. # update document to be recover
  320. document.is_paused = False
  321. document.paused_by = current_user.id
  322. document.paused_at = time.time()
  323. db.session.add(document)
  324. db.session.commit()
  325. # delete paused flag
  326. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  327. redis_client.delete(indexing_cache_key)
  328. # trigger async task
  329. document_indexing_task.delay(document.dataset_id, document.id)
  330. @staticmethod
  331. def get_documents_position(dataset_id):
  332. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  333. if document:
  334. return document.position + 1
  335. else:
  336. return 1
  337. @staticmethod
  338. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  339. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  340. created_from: str = 'web'):
  341. # check document limit
  342. if current_app.config['EDITION'] == 'CLOUD':
  343. documents_count = DocumentService.get_tenant_documents_count()
  344. tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
  345. if documents_count > tenant_document_count:
  346. raise ValueError(f"over document limit {tenant_document_count}.")
  347. # if dataset is empty, update dataset data_source_type
  348. if not dataset.data_source_type:
  349. dataset.data_source_type = document_data["data_source"]["type"]
  350. db.session.commit()
  351. if not dataset.indexing_technique:
  352. if 'indexing_technique' not in document_data \
  353. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  354. raise ValueError("Indexing technique is required")
  355. dataset.indexing_technique = document_data["indexing_technique"]
  356. documents = []
  357. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  358. if 'original_document_id' in document_data and document_data["original_document_id"]:
  359. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  360. documents.append(document)
  361. else:
  362. # save process rule
  363. if not dataset_process_rule:
  364. process_rule = document_data["process_rule"]
  365. if process_rule["mode"] == "custom":
  366. dataset_process_rule = DatasetProcessRule(
  367. dataset_id=dataset.id,
  368. mode=process_rule["mode"],
  369. rules=json.dumps(process_rule["rules"]),
  370. created_by=account.id
  371. )
  372. elif process_rule["mode"] == "automatic":
  373. dataset_process_rule = DatasetProcessRule(
  374. dataset_id=dataset.id,
  375. mode=process_rule["mode"],
  376. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  377. created_by=account.id
  378. )
  379. db.session.add(dataset_process_rule)
  380. db.session.commit()
  381. position = DocumentService.get_documents_position(dataset.id)
  382. document_ids = []
  383. if document_data["data_source"]["type"] == "upload_file":
  384. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  385. for file_id in upload_file_list:
  386. file = db.session.query(UploadFile).filter(
  387. UploadFile.tenant_id == dataset.tenant_id,
  388. UploadFile.id == file_id
  389. ).first()
  390. # raise error if file not found
  391. if not file:
  392. raise FileNotExistsError()
  393. file_name = file.name
  394. data_source_info = {
  395. "upload_file_id": file_id,
  396. }
  397. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  398. document_data["data_source"]["type"],
  399. document_data["doc_form"],
  400. data_source_info, created_from, position,
  401. account, file_name, batch)
  402. db.session.add(document)
  403. db.session.flush()
  404. document_ids.append(document.id)
  405. documents.append(document)
  406. position += 1
  407. elif document_data["data_source"]["type"] == "notion_import":
  408. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  409. exist_page_ids = []
  410. exist_document = dict()
  411. documents = Document.query.filter_by(
  412. dataset_id=dataset.id,
  413. tenant_id=current_user.current_tenant_id,
  414. data_source_type='notion_import',
  415. enabled=True
  416. ).all()
  417. if documents:
  418. for document in documents:
  419. data_source_info = json.loads(document.data_source_info)
  420. exist_page_ids.append(data_source_info['notion_page_id'])
  421. exist_document[data_source_info['notion_page_id']] = document.id
  422. for notion_info in notion_info_list:
  423. workspace_id = notion_info['workspace_id']
  424. data_source_binding = DataSourceBinding.query.filter(
  425. db.and_(
  426. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  427. DataSourceBinding.provider == 'notion',
  428. DataSourceBinding.disabled == False,
  429. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  430. )
  431. ).first()
  432. if not data_source_binding:
  433. raise ValueError('Data source binding not found.')
  434. for page in notion_info['pages']:
  435. if page['page_id'] not in exist_page_ids:
  436. data_source_info = {
  437. "notion_workspace_id": workspace_id,
  438. "notion_page_id": page['page_id'],
  439. "notion_page_icon": page['page_icon'],
  440. "type": page['type']
  441. }
  442. document = DocumentService.save_document(dataset, dataset_process_rule.id,
  443. document_data["data_source"]["type"],
  444. document_data["doc_form"],
  445. data_source_info, created_from, position,
  446. account, page['page_name'], batch)
  447. # if page['type'] == 'database':
  448. # document.splitting_completed_at = datetime.datetime.utcnow()
  449. # document.cleaning_completed_at = datetime.datetime.utcnow()
  450. # document.parsing_completed_at = datetime.datetime.utcnow()
  451. # document.completed_at = datetime.datetime.utcnow()
  452. # document.indexing_status = 'completed'
  453. # document.word_count = 0
  454. # document.tokens = 0
  455. # document.indexing_latency = 0
  456. db.session.add(document)
  457. db.session.flush()
  458. # if page['type'] != 'database':
  459. document_ids.append(document.id)
  460. documents.append(document)
  461. position += 1
  462. else:
  463. exist_document.pop(page['page_id'])
  464. # delete not selected documents
  465. if len(exist_document) > 0:
  466. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  467. db.session.commit()
  468. # trigger async task
  469. #document_index_created.send(dataset.id, document_ids=document_ids)
  470. document_indexing_task.delay(dataset.id, document_ids)
  471. return documents, batch
  472. @staticmethod
  473. def save_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  474. data_source_info: dict, created_from: str, position: int, account: Account, name: str,
  475. batch: str):
  476. document = Document(
  477. tenant_id=dataset.tenant_id,
  478. dataset_id=dataset.id,
  479. position=position,
  480. data_source_type=data_source_type,
  481. data_source_info=json.dumps(data_source_info),
  482. dataset_process_rule_id=process_rule_id,
  483. batch=batch,
  484. name=name,
  485. created_from=created_from,
  486. created_by=account.id,
  487. doc_form=document_form
  488. )
  489. return document
  490. @staticmethod
  491. def get_tenant_documents_count():
  492. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  493. Document.enabled == True,
  494. Document.archived == False,
  495. Document.tenant_id == current_user.current_tenant_id).count()
  496. return documents_count
  497. @staticmethod
  498. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  499. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  500. created_from: str = 'web'):
  501. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  502. if document.display_status != 'available':
  503. raise ValueError("Document is not available")
  504. # save process rule
  505. if 'process_rule' in document_data and document_data['process_rule']:
  506. process_rule = document_data["process_rule"]
  507. if process_rule["mode"] == "custom":
  508. dataset_process_rule = DatasetProcessRule(
  509. dataset_id=dataset.id,
  510. mode=process_rule["mode"],
  511. rules=json.dumps(process_rule["rules"]),
  512. created_by=account.id
  513. )
  514. elif process_rule["mode"] == "automatic":
  515. dataset_process_rule = DatasetProcessRule(
  516. dataset_id=dataset.id,
  517. mode=process_rule["mode"],
  518. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  519. created_by=account.id
  520. )
  521. db.session.add(dataset_process_rule)
  522. db.session.commit()
  523. document.dataset_process_rule_id = dataset_process_rule.id
  524. # update document data source
  525. if 'data_source' in document_data and document_data['data_source']:
  526. file_name = ''
  527. data_source_info = {}
  528. if document_data["data_source"]["type"] == "upload_file":
  529. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  530. for file_id in upload_file_list:
  531. file = db.session.query(UploadFile).filter(
  532. UploadFile.tenant_id == dataset.tenant_id,
  533. UploadFile.id == file_id
  534. ).first()
  535. # raise error if file not found
  536. if not file:
  537. raise FileNotExistsError()
  538. file_name = file.name
  539. data_source_info = {
  540. "upload_file_id": file_id,
  541. }
  542. elif document_data["data_source"]["type"] == "notion_import":
  543. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  544. for notion_info in notion_info_list:
  545. workspace_id = notion_info['workspace_id']
  546. data_source_binding = DataSourceBinding.query.filter(
  547. db.and_(
  548. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  549. DataSourceBinding.provider == 'notion',
  550. DataSourceBinding.disabled == False,
  551. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  552. )
  553. ).first()
  554. if not data_source_binding:
  555. raise ValueError('Data source binding not found.')
  556. for page in notion_info['pages']:
  557. data_source_info = {
  558. "notion_workspace_id": workspace_id,
  559. "notion_page_id": page['page_id'],
  560. "notion_page_icon": page['page_icon'],
  561. "type": page['type']
  562. }
  563. document.data_source_type = document_data["data_source"]["type"]
  564. document.data_source_info = json.dumps(data_source_info)
  565. document.name = file_name
  566. # update document to be waiting
  567. document.indexing_status = 'waiting'
  568. document.completed_at = None
  569. document.processing_started_at = None
  570. document.parsing_completed_at = None
  571. document.cleaning_completed_at = None
  572. document.splitting_completed_at = None
  573. document.updated_at = datetime.datetime.utcnow()
  574. document.created_from = created_from
  575. document.doc_form = document_data['doc_form']
  576. db.session.add(document)
  577. db.session.commit()
  578. # update document segment
  579. update_params = {
  580. DocumentSegment.status: 're_segment'
  581. }
  582. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  583. db.session.commit()
  584. # trigger async task
  585. document_indexing_update_task.delay(document.dataset_id, document.id)
  586. return document
  587. @staticmethod
  588. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  589. # check document limit
  590. if current_app.config['EDITION'] == 'CLOUD':
  591. documents_count = DocumentService.get_tenant_documents_count()
  592. tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])
  593. if documents_count > tenant_document_count:
  594. raise ValueError(f"over document limit {tenant_document_count}.")
  595. # save dataset
  596. dataset = Dataset(
  597. tenant_id=tenant_id,
  598. name='',
  599. data_source_type=document_data["data_source"]["type"],
  600. indexing_technique=document_data["indexing_technique"],
  601. created_by=account.id
  602. )
  603. db.session.add(dataset)
  604. db.session.flush()
  605. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  606. cut_length = 18
  607. cut_name = documents[0].name[:cut_length]
  608. dataset.name = cut_name + '...'
  609. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  610. db.session.commit()
  611. return dataset, documents, batch
  612. @classmethod
  613. def document_create_args_validate(cls, args: dict):
  614. if 'original_document_id' not in args or not args['original_document_id']:
  615. DocumentService.data_source_args_validate(args)
  616. DocumentService.process_rule_args_validate(args)
  617. else:
  618. if ('data_source' not in args and not args['data_source']) \
  619. and ('process_rule' not in args and not args['process_rule']):
  620. raise ValueError("Data source or Process rule is required")
  621. else:
  622. if 'data_source' in args and args['data_source']:
  623. DocumentService.data_source_args_validate(args)
  624. if 'process_rule' in args and args['process_rule']:
  625. DocumentService.process_rule_args_validate(args)
  626. @classmethod
  627. def data_source_args_validate(cls, args: dict):
  628. if 'data_source' not in args or not args['data_source']:
  629. raise ValueError("Data source is required")
  630. if not isinstance(args['data_source'], dict):
  631. raise ValueError("Data source is invalid")
  632. if 'type' not in args['data_source'] or not args['data_source']['type']:
  633. raise ValueError("Data source type is required")
  634. if args['data_source']['type'] not in Document.DATA_SOURCES:
  635. raise ValueError("Data source type is invalid")
  636. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  637. raise ValueError("Data source info is required")
  638. if args['data_source']['type'] == 'upload_file':
  639. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  640. 'file_info_list']:
  641. raise ValueError("File source info is required")
  642. if args['data_source']['type'] == 'notion_import':
  643. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  644. 'notion_info_list']:
  645. raise ValueError("Notion source info is required")
  646. @classmethod
  647. def process_rule_args_validate(cls, args: dict):
  648. if 'process_rule' not in args or not args['process_rule']:
  649. raise ValueError("Process rule is required")
  650. if not isinstance(args['process_rule'], dict):
  651. raise ValueError("Process rule is invalid")
  652. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  653. raise ValueError("Process rule mode is required")
  654. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  655. raise ValueError("Process rule mode is invalid")
  656. if args['process_rule']['mode'] == 'automatic':
  657. args['process_rule']['rules'] = {}
  658. else:
  659. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  660. raise ValueError("Process rule rules is required")
  661. if not isinstance(args['process_rule']['rules'], dict):
  662. raise ValueError("Process rule rules is invalid")
  663. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  664. or args['process_rule']['rules']['pre_processing_rules'] is None:
  665. raise ValueError("Process rule pre_processing_rules is required")
  666. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  667. raise ValueError("Process rule pre_processing_rules is invalid")
  668. unique_pre_processing_rule_dicts = {}
  669. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  670. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  671. raise ValueError("Process rule pre_processing_rules id is required")
  672. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  673. raise ValueError("Process rule pre_processing_rules id is invalid")
  674. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  675. raise ValueError("Process rule pre_processing_rules enabled is required")
  676. if not isinstance(pre_processing_rule['enabled'], bool):
  677. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  678. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  679. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  680. if 'segmentation' not in args['process_rule']['rules'] \
  681. or args['process_rule']['rules']['segmentation'] is None:
  682. raise ValueError("Process rule segmentation is required")
  683. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  684. raise ValueError("Process rule segmentation is invalid")
  685. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  686. or not args['process_rule']['rules']['segmentation']['separator']:
  687. raise ValueError("Process rule segmentation separator is required")
  688. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  689. raise ValueError("Process rule segmentation separator is invalid")
  690. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  691. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  692. raise ValueError("Process rule segmentation max_tokens is required")
  693. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  694. raise ValueError("Process rule segmentation max_tokens is invalid")
  695. @classmethod
  696. def estimate_args_validate(cls, args: dict):
  697. if 'info_list' not in args or not args['info_list']:
  698. raise ValueError("Data source info is required")
  699. if not isinstance(args['info_list'], dict):
  700. raise ValueError("Data info is invalid")
  701. if 'process_rule' not in args or not args['process_rule']:
  702. raise ValueError("Process rule is required")
  703. if not isinstance(args['process_rule'], dict):
  704. raise ValueError("Process rule is invalid")
  705. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  706. raise ValueError("Process rule mode is required")
  707. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  708. raise ValueError("Process rule mode is invalid")
  709. if args['process_rule']['mode'] == 'automatic':
  710. args['process_rule']['rules'] = {}
  711. else:
  712. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  713. raise ValueError("Process rule rules is required")
  714. if not isinstance(args['process_rule']['rules'], dict):
  715. raise ValueError("Process rule rules is invalid")
  716. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  717. or args['process_rule']['rules']['pre_processing_rules'] is None:
  718. raise ValueError("Process rule pre_processing_rules is required")
  719. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  720. raise ValueError("Process rule pre_processing_rules is invalid")
  721. unique_pre_processing_rule_dicts = {}
  722. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  723. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  724. raise ValueError("Process rule pre_processing_rules id is required")
  725. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  726. raise ValueError("Process rule pre_processing_rules id is invalid")
  727. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  728. raise ValueError("Process rule pre_processing_rules enabled is required")
  729. if not isinstance(pre_processing_rule['enabled'], bool):
  730. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  731. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  732. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  733. if 'segmentation' not in args['process_rule']['rules'] \
  734. or args['process_rule']['rules']['segmentation'] is None:
  735. raise ValueError("Process rule segmentation is required")
  736. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  737. raise ValueError("Process rule segmentation is invalid")
  738. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  739. or not args['process_rule']['rules']['segmentation']['separator']:
  740. raise ValueError("Process rule segmentation separator is required")
  741. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  742. raise ValueError("Process rule segmentation separator is invalid")
  743. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  744. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  745. raise ValueError("Process rule segmentation max_tokens is required")
  746. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  747. raise ValueError("Process rule segmentation max_tokens is invalid")
  748. class SegmentService:
  749. @classmethod
  750. def segment_create_args_validate(cls, args: dict, document: Document):
  751. if document.doc_form == 'qa_model':
  752. if 'answer' not in args or not args['answer']:
  753. raise ValueError("Answer is required")
  754. @classmethod
  755. def create_segment(cls, args: dict, document: Document):
  756. content = args['content']
  757. doc_id = str(uuid.uuid4())
  758. segment_hash = helper.generate_text_hash(content)
  759. embedding_model = ModelFactory.get_embedding_model(
  760. tenant_id=document.tenant_id
  761. )
  762. # calc embedding use tokens
  763. tokens = embedding_model.get_num_tokens(content)
  764. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  765. DocumentSegment.document_id == document.id
  766. ).scalar()
  767. segment_document = DocumentSegment(
  768. tenant_id=current_user.current_tenant_id,
  769. dataset_id=document.dataset_id,
  770. document_id=document.id,
  771. index_node_id=doc_id,
  772. index_node_hash=segment_hash,
  773. position=max_position + 1 if max_position else 1,
  774. content=content,
  775. word_count=len(content),
  776. tokens=tokens,
  777. created_by=current_user.id
  778. )
  779. if document.doc_form == 'qa_model':
  780. segment_document.answer = args['answer']
  781. db.session.add(segment_document)
  782. db.session.commit()
  783. indexing_cache_key = 'segment_{}_indexing'.format(segment_document.id)
  784. redis_client.setex(indexing_cache_key, 600, 1)
  785. create_segment_to_index_task.delay(segment_document.id, args['keywords'])
  786. return segment_document
  787. @classmethod
  788. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document):
  789. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  790. cache_result = redis_client.get(indexing_cache_key)
  791. if cache_result is not None:
  792. raise ValueError("Segment is indexing, please try again later")
  793. content = args['content']
  794. if segment.content == content:
  795. if document.doc_form == 'qa_model':
  796. segment.answer = args['answer']
  797. if args['keywords']:
  798. segment.keywords = args['keywords']
  799. db.session.add(segment)
  800. db.session.commit()
  801. # update segment index task
  802. redis_client.setex(indexing_cache_key, 600, 1)
  803. update_segment_keyword_index_task.delay(segment.id)
  804. else:
  805. segment_hash = helper.generate_text_hash(content)
  806. embedding_model = ModelFactory.get_embedding_model(
  807. tenant_id=document.tenant_id
  808. )
  809. # calc embedding use tokens
  810. tokens = embedding_model.get_num_tokens(content)
  811. segment.content = content
  812. segment.index_node_hash = segment_hash
  813. segment.word_count = len(content)
  814. segment.tokens = tokens
  815. segment.status = 'updating'
  816. segment.updated_by = current_user.id
  817. segment.updated_at = datetime.datetime.utcnow()
  818. if document.doc_form == 'qa_model':
  819. segment.answer = args['answer']
  820. db.session.add(segment)
  821. db.session.commit()
  822. # update segment index task
  823. redis_client.setex(indexing_cache_key, 600, 1)
  824. update_segment_index_task.delay(segment.id, args['keywords'])
  825. return segment