model_manager.py 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. import logging
  2. import os
  3. from collections.abc import Callable, Generator, Sequence
  4. from typing import IO, Literal, Optional, Union, cast, overload
  5. from core.embedding.embedding_constant import EmbeddingInputType
  6. from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
  7. from core.entities.provider_entities import ModelLoadBalancingConfiguration
  8. from core.errors.error import ProviderTokenNotInitError
  9. from core.model_runtime.callbacks.base_callback import Callback
  10. from core.model_runtime.entities.llm_entities import LLMResult
  11. from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
  12. from core.model_runtime.entities.model_entities import ModelType
  13. from core.model_runtime.entities.rerank_entities import RerankResult
  14. from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
  15. from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
  16. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  17. from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
  18. from core.model_runtime.model_providers.__base.rerank_model import RerankModel
  19. from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
  20. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  21. from core.model_runtime.model_providers.__base.tts_model import TTSModel
  22. from core.provider_manager import ProviderManager
  23. from extensions.ext_redis import redis_client
  24. from models.provider import ProviderType
  25. logger = logging.getLogger(__name__)
  26. class ModelInstance:
  27. """
  28. Model instance class
  29. """
  30. def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
  31. self.provider_model_bundle = provider_model_bundle
  32. self.model = model
  33. self.provider = provider_model_bundle.configuration.provider.provider
  34. self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
  35. self.model_type_instance = self.provider_model_bundle.model_type_instance
  36. self.load_balancing_manager = self._get_load_balancing_manager(
  37. configuration=provider_model_bundle.configuration,
  38. model_type=provider_model_bundle.model_type_instance.model_type,
  39. model=model,
  40. credentials=self.credentials,
  41. )
  42. @staticmethod
  43. def _fetch_credentials_from_bundle(provider_model_bundle: ProviderModelBundle, model: str) -> dict:
  44. """
  45. Fetch credentials from provider model bundle
  46. :param provider_model_bundle: provider model bundle
  47. :param model: model name
  48. :return:
  49. """
  50. configuration = provider_model_bundle.configuration
  51. model_type = provider_model_bundle.model_type_instance.model_type
  52. credentials = configuration.get_current_credentials(model_type=model_type, model=model)
  53. if credentials is None:
  54. raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")
  55. return credentials
  56. @staticmethod
  57. def _get_load_balancing_manager(
  58. configuration: ProviderConfiguration, model_type: ModelType, model: str, credentials: dict
  59. ) -> Optional["LBModelManager"]:
  60. """
  61. Get load balancing model credentials
  62. :param configuration: provider configuration
  63. :param model_type: model type
  64. :param model: model name
  65. :param credentials: model credentials
  66. :return:
  67. """
  68. if configuration.model_settings and configuration.using_provider_type == ProviderType.CUSTOM:
  69. current_model_setting = None
  70. # check if model is disabled by admin
  71. for model_setting in configuration.model_settings:
  72. if model_setting.model_type == model_type and model_setting.model == model:
  73. current_model_setting = model_setting
  74. break
  75. # check if load balancing is enabled
  76. if current_model_setting and current_model_setting.load_balancing_configs:
  77. # use load balancing proxy to choose credentials
  78. lb_model_manager = LBModelManager(
  79. tenant_id=configuration.tenant_id,
  80. provider=configuration.provider.provider,
  81. model_type=model_type,
  82. model=model,
  83. load_balancing_configs=current_model_setting.load_balancing_configs,
  84. managed_credentials=credentials if configuration.custom_configuration.provider else None,
  85. )
  86. return lb_model_manager
  87. return None
  88. @overload
  89. def invoke_llm(
  90. self,
  91. prompt_messages: list[PromptMessage],
  92. model_parameters: Optional[dict] = None,
  93. tools: Sequence[PromptMessageTool] | None = None,
  94. stop: Optional[list[str]] = None,
  95. stream: Literal[True] = True,
  96. user: Optional[str] = None,
  97. callbacks: Optional[list[Callback]] = None,
  98. ) -> Generator: ...
  99. @overload
  100. def invoke_llm(
  101. self,
  102. prompt_messages: list[PromptMessage],
  103. model_parameters: Optional[dict] = None,
  104. tools: Sequence[PromptMessageTool] | None = None,
  105. stop: Optional[list[str]] = None,
  106. stream: Literal[False] = False,
  107. user: Optional[str] = None,
  108. callbacks: Optional[list[Callback]] = None,
  109. ) -> LLMResult: ...
  110. @overload
  111. def invoke_llm(
  112. self,
  113. prompt_messages: list[PromptMessage],
  114. model_parameters: Optional[dict] = None,
  115. tools: Sequence[PromptMessageTool] | None = None,
  116. stop: Optional[list[str]] = None,
  117. stream: bool = True,
  118. user: Optional[str] = None,
  119. callbacks: Optional[list[Callback]] = None,
  120. ) -> Union[LLMResult, Generator]: ...
  121. def invoke_llm(
  122. self,
  123. prompt_messages: list[PromptMessage],
  124. model_parameters: Optional[dict] = None,
  125. tools: Sequence[PromptMessageTool] | None = None,
  126. stop: Optional[list[str]] = None,
  127. stream: bool = True,
  128. user: Optional[str] = None,
  129. callbacks: Optional[list[Callback]] = None,
  130. ) -> Union[LLMResult, Generator]:
  131. """
  132. Invoke large language model
  133. :param prompt_messages: prompt messages
  134. :param model_parameters: model parameters
  135. :param tools: tools for tool calling
  136. :param stop: stop words
  137. :param stream: is stream response
  138. :param user: unique user id
  139. :param callbacks: callbacks
  140. :return: full response or stream response chunk generator result
  141. """
  142. if not isinstance(self.model_type_instance, LargeLanguageModel):
  143. raise Exception("Model type instance is not LargeLanguageModel")
  144. self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
  145. return self._round_robin_invoke(
  146. function=self.model_type_instance.invoke,
  147. model=self.model,
  148. credentials=self.credentials,
  149. prompt_messages=prompt_messages,
  150. model_parameters=model_parameters,
  151. tools=tools,
  152. stop=stop,
  153. stream=stream,
  154. user=user,
  155. callbacks=callbacks,
  156. )
  157. def get_llm_num_tokens(
  158. self, prompt_messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
  159. ) -> int:
  160. """
  161. Get number of tokens for llm
  162. :param prompt_messages: prompt messages
  163. :param tools: tools for tool calling
  164. :return:
  165. """
  166. if not isinstance(self.model_type_instance, LargeLanguageModel):
  167. raise Exception("Model type instance is not LargeLanguageModel")
  168. self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
  169. return self._round_robin_invoke(
  170. function=self.model_type_instance.get_num_tokens,
  171. model=self.model,
  172. credentials=self.credentials,
  173. prompt_messages=prompt_messages,
  174. tools=tools,
  175. )
  176. def invoke_text_embedding(
  177. self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
  178. ) -> TextEmbeddingResult:
  179. """
  180. Invoke large language model
  181. :param texts: texts to embed
  182. :param user: unique user id
  183. :param input_type: input type
  184. :return: embeddings result
  185. """
  186. if not isinstance(self.model_type_instance, TextEmbeddingModel):
  187. raise Exception("Model type instance is not TextEmbeddingModel")
  188. self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
  189. return self._round_robin_invoke(
  190. function=self.model_type_instance.invoke,
  191. model=self.model,
  192. credentials=self.credentials,
  193. texts=texts,
  194. user=user,
  195. input_type=input_type,
  196. )
  197. def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
  198. """
  199. Get number of tokens for text embedding
  200. :param texts: texts to embed
  201. :return:
  202. """
  203. if not isinstance(self.model_type_instance, TextEmbeddingModel):
  204. raise Exception("Model type instance is not TextEmbeddingModel")
  205. self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
  206. return self._round_robin_invoke(
  207. function=self.model_type_instance.get_num_tokens,
  208. model=self.model,
  209. credentials=self.credentials,
  210. texts=texts,
  211. )
  212. def invoke_rerank(
  213. self,
  214. query: str,
  215. docs: list[str],
  216. score_threshold: Optional[float] = None,
  217. top_n: Optional[int] = None,
  218. user: Optional[str] = None,
  219. ) -> RerankResult:
  220. """
  221. Invoke rerank model
  222. :param query: search query
  223. :param docs: docs for reranking
  224. :param score_threshold: score threshold
  225. :param top_n: top n
  226. :param user: unique user id
  227. :return: rerank result
  228. """
  229. if not isinstance(self.model_type_instance, RerankModel):
  230. raise Exception("Model type instance is not RerankModel")
  231. self.model_type_instance = cast(RerankModel, self.model_type_instance)
  232. return self._round_robin_invoke(
  233. function=self.model_type_instance.invoke,
  234. model=self.model,
  235. credentials=self.credentials,
  236. query=query,
  237. docs=docs,
  238. score_threshold=score_threshold,
  239. top_n=top_n,
  240. user=user,
  241. )
  242. def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool:
  243. """
  244. Invoke moderation model
  245. :param text: text to moderate
  246. :param user: unique user id
  247. :return: false if text is safe, true otherwise
  248. """
  249. if not isinstance(self.model_type_instance, ModerationModel):
  250. raise Exception("Model type instance is not ModerationModel")
  251. self.model_type_instance = cast(ModerationModel, self.model_type_instance)
  252. return self._round_robin_invoke(
  253. function=self.model_type_instance.invoke,
  254. model=self.model,
  255. credentials=self.credentials,
  256. text=text,
  257. user=user,
  258. )
  259. def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str:
  260. """
  261. Invoke large language model
  262. :param file: audio file
  263. :param user: unique user id
  264. :return: text for given audio file
  265. """
  266. if not isinstance(self.model_type_instance, Speech2TextModel):
  267. raise Exception("Model type instance is not Speech2TextModel")
  268. self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
  269. return self._round_robin_invoke(
  270. function=self.model_type_instance.invoke,
  271. model=self.model,
  272. credentials=self.credentials,
  273. file=file,
  274. user=user,
  275. )
  276. def invoke_tts(
  277. self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None
  278. ) -> Generator[bytes, None, None]:
  279. """
  280. Invoke large language tts model
  281. :param content_text: text content to be translated
  282. :param tenant_id: user tenant id
  283. :param voice: model timbre
  284. :param user: unique user id
  285. :return: text for given audio file
  286. """
  287. if not isinstance(self.model_type_instance, TTSModel):
  288. raise Exception("Model type instance is not TTSModel")
  289. self.model_type_instance = cast(TTSModel, self.model_type_instance)
  290. return self._round_robin_invoke(
  291. function=self.model_type_instance.invoke,
  292. model=self.model,
  293. credentials=self.credentials,
  294. content_text=content_text,
  295. user=user,
  296. tenant_id=tenant_id,
  297. voice=voice,
  298. )
  299. def _round_robin_invoke(self, function: Callable, *args, **kwargs):
  300. """
  301. Round-robin invoke
  302. :param function: function to invoke
  303. :param args: function args
  304. :param kwargs: function kwargs
  305. :return:
  306. """
  307. if not self.load_balancing_manager:
  308. return function(*args, **kwargs)
  309. last_exception = None
  310. while True:
  311. lb_config = self.load_balancing_manager.fetch_next()
  312. if not lb_config:
  313. if not last_exception:
  314. raise ProviderTokenNotInitError("Model credentials is not initialized.")
  315. else:
  316. raise last_exception
  317. try:
  318. if "credentials" in kwargs:
  319. del kwargs["credentials"]
  320. return function(*args, **kwargs, credentials=lb_config.credentials)
  321. except InvokeRateLimitError as e:
  322. # expire in 60 seconds
  323. self.load_balancing_manager.cooldown(lb_config, expire=60)
  324. last_exception = e
  325. continue
  326. except (InvokeAuthorizationError, InvokeConnectionError) as e:
  327. # expire in 10 seconds
  328. self.load_balancing_manager.cooldown(lb_config, expire=10)
  329. last_exception = e
  330. continue
  331. except Exception as e:
  332. raise e
  333. def get_tts_voices(self, language: Optional[str] = None) -> list:
  334. """
  335. Invoke large language tts model voices
  336. :param language: tts language
  337. :return: tts model voices
  338. """
  339. if not isinstance(self.model_type_instance, TTSModel):
  340. raise Exception("Model type instance is not TTSModel")
  341. self.model_type_instance = cast(TTSModel, self.model_type_instance)
  342. return self.model_type_instance.get_tts_model_voices(
  343. model=self.model, credentials=self.credentials, language=language
  344. )
  345. class ModelManager:
  346. def __init__(self) -> None:
  347. self._provider_manager = ProviderManager()
  348. def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
  349. """
  350. Get model instance
  351. :param tenant_id: tenant id
  352. :param provider: provider name
  353. :param model_type: model type
  354. :param model: model name
  355. :return:
  356. """
  357. if not provider:
  358. return self.get_default_model_instance(tenant_id, model_type)
  359. provider_model_bundle = self._provider_manager.get_provider_model_bundle(
  360. tenant_id=tenant_id, provider=provider, model_type=model_type
  361. )
  362. return ModelInstance(provider_model_bundle, model)
  363. def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]:
  364. """
  365. Return first provider and the first model in the provider
  366. :param tenant_id: tenant id
  367. :param model_type: model type
  368. :return: provider name, model name
  369. """
  370. return self._provider_manager.get_first_provider_first_model(tenant_id, model_type)
  371. def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
  372. """
  373. Get default model instance
  374. :param tenant_id: tenant id
  375. :param model_type: model type
  376. :return:
  377. """
  378. default_model_entity = self._provider_manager.get_default_model(tenant_id=tenant_id, model_type=model_type)
  379. if not default_model_entity:
  380. raise ProviderTokenNotInitError(f"Default model not found for {model_type}")
  381. return self.get_model_instance(
  382. tenant_id=tenant_id,
  383. provider=default_model_entity.provider.provider,
  384. model_type=model_type,
  385. model=default_model_entity.model,
  386. )
  387. class LBModelManager:
  388. def __init__(
  389. self,
  390. tenant_id: str,
  391. provider: str,
  392. model_type: ModelType,
  393. model: str,
  394. load_balancing_configs: list[ModelLoadBalancingConfiguration],
  395. managed_credentials: Optional[dict] = None,
  396. ) -> None:
  397. """
  398. Load balancing model manager
  399. :param tenant_id: tenant_id
  400. :param provider: provider
  401. :param model_type: model_type
  402. :param model: model name
  403. :param load_balancing_configs: all load balancing configurations
  404. :param managed_credentials: credentials if load balancing configuration name is __inherit__
  405. """
  406. self._tenant_id = tenant_id
  407. self._provider = provider
  408. self._model_type = model_type
  409. self._model = model
  410. self._load_balancing_configs = load_balancing_configs
  411. for load_balancing_config in self._load_balancing_configs[:]: # Iterate over a shallow copy of the list
  412. if load_balancing_config.name == "__inherit__":
  413. if not managed_credentials:
  414. # remove __inherit__ if managed credentials is not provided
  415. self._load_balancing_configs.remove(load_balancing_config)
  416. else:
  417. load_balancing_config.credentials = managed_credentials
  418. def fetch_next(self) -> Optional[ModelLoadBalancingConfiguration]:
  419. """
  420. Get next model load balancing config
  421. Strategy: Round Robin
  422. :return:
  423. """
  424. cache_key = "model_lb_index:{}:{}:{}:{}".format(
  425. self._tenant_id, self._provider, self._model_type.value, self._model
  426. )
  427. cooldown_load_balancing_configs = []
  428. max_index = len(self._load_balancing_configs)
  429. while True:
  430. current_index = redis_client.incr(cache_key)
  431. current_index = cast(int, current_index)
  432. if current_index >= 10000000:
  433. current_index = 1
  434. redis_client.set(cache_key, current_index)
  435. redis_client.expire(cache_key, 3600)
  436. if current_index > max_index:
  437. current_index = current_index % max_index
  438. real_index = current_index - 1
  439. if real_index > max_index:
  440. real_index = 0
  441. config = self._load_balancing_configs[real_index]
  442. if self.in_cooldown(config):
  443. cooldown_load_balancing_configs.append(config)
  444. if len(cooldown_load_balancing_configs) >= len(self._load_balancing_configs):
  445. # all configs are in cooldown
  446. return None
  447. continue
  448. if bool(os.environ.get("DEBUG", "False").lower() == "true"):
  449. logger.info(
  450. f"Model LB\nid: {config.id}\nname:{config.name}\n"
  451. f"tenant_id: {self._tenant_id}\nprovider: {self._provider}\n"
  452. f"model_type: {self._model_type.value}\nmodel: {self._model}"
  453. )
  454. return config
  455. return None
  456. def cooldown(self, config: ModelLoadBalancingConfiguration, expire: int = 60) -> None:
  457. """
  458. Cooldown model load balancing config
  459. :param config: model load balancing config
  460. :param expire: cooldown time
  461. :return:
  462. """
  463. cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
  464. self._tenant_id, self._provider, self._model_type.value, self._model, config.id
  465. )
  466. redis_client.setex(cooldown_cache_key, expire, "true")
  467. def in_cooldown(self, config: ModelLoadBalancingConfiguration) -> bool:
  468. """
  469. Check if model load balancing config is in cooldown
  470. :param config: model load balancing config
  471. :return:
  472. """
  473. cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
  474. self._tenant_id, self._provider, self._model_type.value, self._model, config.id
  475. )
  476. res = redis_client.exists(cooldown_cache_key)
  477. res = cast(bool, res)
  478. return res
  479. @staticmethod
  480. def get_config_in_cooldown_and_ttl(
  481. tenant_id: str, provider: str, model_type: ModelType, model: str, config_id: str
  482. ) -> tuple[bool, int]:
  483. """
  484. Get model load balancing config is in cooldown and ttl
  485. :param tenant_id: workspace id
  486. :param provider: provider name
  487. :param model_type: model type
  488. :param model: model name
  489. :param config_id: model load balancing config id
  490. :return:
  491. """
  492. cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
  493. tenant_id, provider, model_type.value, model, config_id
  494. )
  495. ttl = redis_client.ttl(cooldown_cache_key)
  496. if ttl == -2:
  497. return False, 0
  498. ttl = cast(int, ttl)
  499. return True, ttl