Yeuoly 0025b27200 fix: tool invocation logs 7 ay önce
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 ay önce
.vscode 0d4753785f chore: remove .idea and .vscode from root path (#7437) 8 ay önce
configs 47c8824be6 feat: move model request to plugin daemon 7 ay önce
constants 8c51d06222 feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 7 ay önce
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 ay önce
controllers 8236373498 feat: remove unused codes 7 ay önce
core 0025b27200 fix: tool invocation logs 7 ay önce
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 ay önce
events 74f58f29f9 chore: bump ruff to 0.6.8 for fixing violation in SIM910 (#8869) 7 ay önce
extensions d96f5ba1ca add storage error log (#8556) 7 ay önce
fields 8c51d06222 feat: regenerate in `Chat`, `agent` and `Chatflow` app (#7661) 7 ay önce
libs 00d1c45518 Merge main 7 ay önce
migrations e9e5c8806a refactor: using DeclarativeBase as parent class of models, refactored tools 7 ay önce
models e9e5c8806a refactor: using DeclarativeBase as parent class of models, refactored tools 7 ay önce
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 8 ay önce
services 0dd05d7b6d feat: tool output schema 7 ay önce
tasks a1104ab97e chore: refurish python code by applying Pylint linter rules (#8322) 7 ay önce
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 10 ay önce
tests 8236373498 feat: remove unused codes 7 ay önce
.dockerignore 7c83d5ce76 feat: add dockerignore items 7 ay önce
.env.example d9cced8419 Merge branch 'main' into fix/chore-fix 7 ay önce
Dockerfile 8236373498 feat: remove unused codes 7 ay önce
README.md e75c33a561 Enhance Readme Documentation to Clarify the Importance of Celery Service (#8558) 7 ay önce
app.py 9ca2e2c968 chore: remove windows platform timezone set (#8712) 7 ay önce
commands.py bef83a4d2e fix: typos and improve naming conventions: (#8687) 7 ay önce
poetry.lock a57f60a6e0 feat: remove unused codes 7 ay önce
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 10 ay önce
pyproject.toml a57f60a6e0 feat: remove unused codes 7 ay önce

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

```bash for Linux sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env


   ```bash for Mac
   secret_key=$(openssl rand -base64 42)
   sed -i '' "/^SECRET_KEY=/c\\
   SECRET_KEY=${secret_key}" .env
  1. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies
   poetry env use 3.10
   poetry install

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend
   poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
  1. Start Dify web service.
  2. Setup your application by visiting http://localhost:3000...
  3. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.
   poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment
   poetry install --with dev
  1. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml
   cd ../
   poetry run -C api bash dev/pytest/pytest_all_tests.sh