import json from typing import Type from langchain.embeddings import LocalAIEmbeddings from langchain.schema import HumanMessage from core.helper import encrypter from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule, ModelMode from core.model_providers.models.llm.localai_model import LocalAIModel from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError from core.model_providers.models.base import BaseProviderModel from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI from core.third_party.langchain.llms.open_ai import EnhanceOpenAI from models.provider import ProviderType class LocalAIProvider(BaseModelProvider): @property def provider_name(self): """ Returns the name of a provider. """ return 'localai' def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]: return [] def _get_text_generation_model_mode(self, model_name) -> str: credentials = self.get_model_credentials(model_name, ModelType.TEXT_GENERATION) if credentials['completion_type'] == 'chat_completion': return ModelMode.CHAT.value else: return ModelMode.COMPLETION.value def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]: """ Returns the model class. :param model_type: :return: """ if model_type == ModelType.TEXT_GENERATION: model_class = LocalAIModel elif model_type == ModelType.EMBEDDINGS: model_class = LocalAIEmbedding else: raise NotImplementedError return model_class def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules: """ get model parameter rules. :param model_name: :param model_type: :return: """ return ModelKwargsRules( temperature=KwargRule[float](min=0, max=2, default=0.7, precision=2), top_p=KwargRule[float](min=0, max=1, default=1, precision=2), max_tokens=KwargRule[int](min=10, max=4097, default=16, precision=0), ) @classmethod def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict): """ check model credentials valid. :param model_name: :param model_type: :param credentials: """ if 'server_url' not in credentials: raise CredentialsValidateFailedError('LocalAI Server URL must be provided.') try: if model_type == ModelType.EMBEDDINGS: model = LocalAIEmbeddings( model=model_name, openai_api_key='1', openai_api_base=credentials['server_url'] ) model.embed_query("ping") else: if ('completion_type' not in credentials or credentials['completion_type'] not in ['completion', 'chat_completion']): raise CredentialsValidateFailedError('LocalAI Completion Type must be provided.') if credentials['completion_type'] == 'chat_completion': model = EnhanceChatOpenAI( model_name=model_name, openai_api_key='1', openai_api_base=credentials['server_url'] + '/v1', max_tokens=10, request_timeout=60, ) model([HumanMessage(content='ping')]) else: model = EnhanceOpenAI( model_name=model_name, openai_api_key='1', openai_api_base=credentials['server_url'] + '/v1', max_tokens=10, request_timeout=60, ) model('ping') except Exception as ex: raise CredentialsValidateFailedError(str(ex)) @classmethod def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType, credentials: dict) -> dict: """ encrypt model credentials for save. :param tenant_id: :param model_name: :param model_type: :param credentials: :return: """ credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url']) return credentials def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict: """ get credentials for llm use. :param model_name: :param model_type: :param obfuscated: :return: """ if self.provider.provider_type != ProviderType.CUSTOM.value: raise NotImplementedError provider_model = self._get_provider_model(model_name, model_type) if not provider_model.encrypted_config: return { 'server_url': None, } credentials = json.loads(provider_model.encrypted_config) if credentials['server_url']: credentials['server_url'] = encrypter.decrypt_token( self.provider.tenant_id, credentials['server_url'] ) if obfuscated: credentials['server_url'] = encrypter.obfuscated_token(credentials['server_url']) return credentials @classmethod def is_provider_credentials_valid_or_raise(cls, credentials: dict): return @classmethod def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict: return {} def get_provider_credentials(self, obfuscated: bool = False) -> dict: return {}