import logging from typing import cast from core.app.apps.base_app_queue_manager import AppQueueManager, PublishFrom from core.app.apps.base_app_runner import AppRunner from core.app.apps.chat.app_config_manager import ChatAppConfig from core.app.entities.app_invoke_entities import ( ChatAppGenerateEntity, ) from core.app.entities.queue_entities import QueueAnnotationReplyEvent from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler from core.memory.token_buffer_memory import TokenBufferMemory from core.model_manager import ModelInstance from core.moderation.base import ModerationException from core.rag.retrieval.dataset_retrieval import DatasetRetrieval from extensions.ext_database import db from models.model import App, Conversation, Message logger = logging.getLogger(__name__) class ChatAppRunner(AppRunner): """ Chat Application Runner """ def run(self, application_generate_entity: ChatAppGenerateEntity, queue_manager: AppQueueManager, conversation: Conversation, message: Message) -> None: """ Run application :param application_generate_entity: application generate entity :param queue_manager: application queue manager :param conversation: conversation :param message: message :return: """ app_config = application_generate_entity.app_config app_config = cast(ChatAppConfig, app_config) app_record = db.session.query(App).filter(App.id == app_config.app_id).first() if not app_record: raise ValueError("App not found") inputs = application_generate_entity.inputs query = application_generate_entity.query files = application_generate_entity.files # Pre-calculate the number of tokens of the prompt messages, # and return the rest number of tokens by model context token size limit and max token size limit. # If the rest number of tokens is not enough, raise exception. # Include: prompt template, inputs, query(optional), files(optional) # Not Include: memory, external data, dataset context self.get_pre_calculate_rest_tokens( app_record=app_record, model_config=application_generate_entity.model_conf, prompt_template_entity=app_config.prompt_template, inputs=inputs, files=files, query=query ) memory = None if application_generate_entity.conversation_id: # get memory of conversation (read-only) model_instance = ModelInstance( provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle, model=application_generate_entity.model_conf.model ) memory = TokenBufferMemory( conversation=conversation, model_instance=model_instance ) # organize all inputs and template to prompt messages # Include: prompt template, inputs, query(optional), files(optional) # memory(optional) prompt_messages, stop = self.organize_prompt_messages( app_record=app_record, model_config=application_generate_entity.model_conf, prompt_template_entity=app_config.prompt_template, inputs=inputs, files=files, query=query, memory=memory ) # moderation try: # process sensitive_word_avoidance _, inputs, query = self.moderation_for_inputs( app_id=app_record.id, tenant_id=app_config.tenant_id, app_generate_entity=application_generate_entity, inputs=inputs, query=query, message_id=message.id ) except ModerationException as e: self.direct_output( queue_manager=queue_manager, app_generate_entity=application_generate_entity, prompt_messages=prompt_messages, text=str(e), stream=application_generate_entity.stream ) return if query: # annotation reply annotation_reply = self.query_app_annotations_to_reply( app_record=app_record, message=message, query=query, user_id=application_generate_entity.user_id, invoke_from=application_generate_entity.invoke_from ) if annotation_reply: queue_manager.publish( QueueAnnotationReplyEvent(message_annotation_id=annotation_reply.id), PublishFrom.APPLICATION_MANAGER ) self.direct_output( queue_manager=queue_manager, app_generate_entity=application_generate_entity, prompt_messages=prompt_messages, text=annotation_reply.content, stream=application_generate_entity.stream ) return # fill in variable inputs from external data tools if exists external_data_tools = app_config.external_data_variables if external_data_tools: inputs = self.fill_in_inputs_from_external_data_tools( tenant_id=app_record.tenant_id, app_id=app_record.id, external_data_tools=external_data_tools, inputs=inputs, query=query ) # get context from datasets context = None if app_config.dataset and app_config.dataset.dataset_ids: hit_callback = DatasetIndexToolCallbackHandler( queue_manager, app_record.id, message.id, application_generate_entity.user_id, application_generate_entity.invoke_from ) dataset_retrieval = DatasetRetrieval(application_generate_entity) context = dataset_retrieval.retrieve( app_id=app_record.id, user_id=application_generate_entity.user_id, tenant_id=app_record.tenant_id, model_config=application_generate_entity.model_conf, config=app_config.dataset, query=query, invoke_from=application_generate_entity.invoke_from, show_retrieve_source=app_config.additional_features.show_retrieve_source, hit_callback=hit_callback, memory=memory, message_id=message.id, ) # reorganize all inputs and template to prompt messages # Include: prompt template, inputs, query(optional), files(optional) # memory(optional), external data, dataset context(optional) prompt_messages, stop = self.organize_prompt_messages( app_record=app_record, model_config=application_generate_entity.model_conf, prompt_template_entity=app_config.prompt_template, inputs=inputs, files=files, query=query, context=context, memory=memory ) # check hosting moderation hosting_moderation_result = self.check_hosting_moderation( application_generate_entity=application_generate_entity, queue_manager=queue_manager, prompt_messages=prompt_messages ) if hosting_moderation_result: return # Re-calculate the max tokens if sum(prompt_token + max_tokens) over model token limit self.recalc_llm_max_tokens( model_config=application_generate_entity.model_conf, prompt_messages=prompt_messages ) # Invoke model model_instance = ModelInstance( provider_model_bundle=application_generate_entity.model_conf.provider_model_bundle, model=application_generate_entity.model_conf.model ) db.session.close() invoke_result = model_instance.invoke_llm( prompt_messages=prompt_messages, model_parameters=application_generate_entity.model_conf.parameters, stop=stop, stream=application_generate_entity.stream, user=application_generate_entity.user_id, ) # handle invoke result self._handle_invoke_result( invoke_result=invoke_result, queue_manager=queue_manager, stream=application_generate_entity.stream )