import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import AssistantPromptMessage, UserPromptMessage from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.huggingface_hub.llm.llm import HuggingfaceHubLargeLanguageModel from tests.integration_tests.model_runtime.__mock.huggingface import setup_huggingface_mock @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_hosted_inference_api_validate_credentials(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='HuggingFaceH4/zephyr-7b-beta', credentials={ 'huggingfacehub_api_type': 'hosted_inference_api', 'huggingfacehub_api_token': 'invalid_key' } ) with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='fake-model', credentials={ 'huggingfacehub_api_type': 'hosted_inference_api', 'huggingfacehub_api_token': 'invalid_key' } ) model.validate_credentials( model='HuggingFaceH4/zephyr-7b-beta', credentials={ 'huggingfacehub_api_type': 'hosted_inference_api', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY') } ) @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_hosted_inference_api_invoke_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model='HuggingFaceH4/zephyr-7b-beta', credentials={ 'huggingfacehub_api_type': 'hosted_inference_api', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY') }, prompt_messages=[ UserPromptMessage( content='Who are you?' ) ], model_parameters={ 'temperature': 1.0, 'top_k': 2, 'top_p': 0.5, }, stop=['How'], stream=False, user="abc-123" ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_hosted_inference_api_invoke_stream_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model='HuggingFaceH4/zephyr-7b-beta', credentials={ 'huggingfacehub_api_type': 'hosted_inference_api', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY') }, prompt_messages=[ UserPromptMessage( content='Who are you?' ) ], model_parameters={ 'temperature': 1.0, 'top_k': 2, 'top_p': 0.5, }, stop=['How'], stream=True, user="abc-123" ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_inference_endpoints_text_generation_validate_credentials(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='openchat/openchat_3.5', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': 'invalid_key', 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text-generation' } ) model.validate_credentials( model='openchat/openchat_3.5', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text-generation' } ) @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_inference_endpoints_text_generation_invoke_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model='openchat/openchat_3.5', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text-generation' }, prompt_messages=[ UserPromptMessage( content='Who are you?' ) ], model_parameters={ 'temperature': 1.0, 'top_k': 2, 'top_p': 0.5, }, stop=['How'], stream=False, user="abc-123" ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_inference_endpoints_text_generation_invoke_stream_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model='openchat/openchat_3.5', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text-generation' }, prompt_messages=[ UserPromptMessage( content='Who are you?' ) ], model_parameters={ 'temperature': 1.0, 'top_k': 2, 'top_p': 0.5, }, stop=['How'], stream=True, user="abc-123" ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_inference_endpoints_text2text_generation_validate_credentials(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model='google/mt5-base', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': 'invalid_key', 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text2text-generation' } ) model.validate_credentials( model='google/mt5-base', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text2text-generation' } ) @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_inference_endpoints_text2text_generation_invoke_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model='google/mt5-base', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text2text-generation' }, prompt_messages=[ UserPromptMessage( content='Who are you?' ) ], model_parameters={ 'temperature': 1.0, 'top_k': 2, 'top_p': 0.5, }, stop=['How'], stream=False, user="abc-123" ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize('setup_huggingface_mock', [['none']], indirect=True) def test_inference_endpoints_text2text_generation_invoke_stream_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model='google/mt5-base', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text2text-generation' }, prompt_messages=[ UserPromptMessage( content='Who are you?' ) ], model_parameters={ 'temperature': 1.0, 'top_k': 2, 'top_p': 0.5, }, stop=['How'], stream=True, user="abc-123" ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True def test_get_num_tokens(): model = HuggingfaceHubLargeLanguageModel() num_tokens = model.get_num_tokens( model='google/mt5-base', credentials={ 'huggingfacehub_api_type': 'inference_endpoints', 'huggingfacehub_api_token': os.environ.get('HUGGINGFACE_API_KEY'), 'huggingfacehub_endpoint_url': os.environ.get('HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL'), 'task_type': 'text2text-generation' }, prompt_messages=[ UserPromptMessage( content='Hello World!' ) ] ) assert num_tokens == 7