import os from collections.abc import Generator import pytest from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta from core.model_runtime.entities.message_entities import AssistantPromptMessage, UserPromptMessage from core.model_runtime.errors.validate import CredentialsValidateFailedError from core.model_runtime.model_providers.huggingface_hub.llm.llm import HuggingfaceHubLargeLanguageModel from tests.integration_tests.model_runtime.__mock.huggingface import setup_huggingface_mock @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_hosted_inference_api_validate_credentials(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model="HuggingFaceH4/zephyr-7b-beta", credentials={"huggingfacehub_api_type": "hosted_inference_api", "huggingfacehub_api_token": "invalid_key"}, ) with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model="fake-model", credentials={"huggingfacehub_api_type": "hosted_inference_api", "huggingfacehub_api_token": "invalid_key"}, ) model.validate_credentials( model="HuggingFaceH4/zephyr-7b-beta", credentials={ "huggingfacehub_api_type": "hosted_inference_api", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), }, ) @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_hosted_inference_api_invoke_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model="HuggingFaceH4/zephyr-7b-beta", credentials={ "huggingfacehub_api_type": "hosted_inference_api", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), }, prompt_messages=[UserPromptMessage(content="Who are you?")], model_parameters={ "temperature": 1.0, "top_k": 2, "top_p": 0.5, }, stop=["How"], stream=False, user="abc-123", ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_hosted_inference_api_invoke_stream_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model="HuggingFaceH4/zephyr-7b-beta", credentials={ "huggingfacehub_api_type": "hosted_inference_api", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), }, prompt_messages=[UserPromptMessage(content="Who are you?")], model_parameters={ "temperature": 1.0, "top_k": 2, "top_p": 0.5, }, stop=["How"], stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_inference_endpoints_text_generation_validate_credentials(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model="openchat/openchat_3.5", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": "invalid_key", "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT_GEN_ENDPOINT_URL"), "task_type": "text-generation", }, ) model.validate_credentials( model="openchat/openchat_3.5", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT_GEN_ENDPOINT_URL"), "task_type": "text-generation", }, ) @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_inference_endpoints_text_generation_invoke_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model="openchat/openchat_3.5", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT_GEN_ENDPOINT_URL"), "task_type": "text-generation", }, prompt_messages=[UserPromptMessage(content="Who are you?")], model_parameters={ "temperature": 1.0, "top_k": 2, "top_p": 0.5, }, stop=["How"], stream=False, user="abc-123", ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_inference_endpoints_text_generation_invoke_stream_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model="openchat/openchat_3.5", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT_GEN_ENDPOINT_URL"), "task_type": "text-generation", }, prompt_messages=[UserPromptMessage(content="Who are you?")], model_parameters={ "temperature": 1.0, "top_k": 2, "top_p": 0.5, }, stop=["How"], stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_inference_endpoints_text2text_generation_validate_credentials(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() with pytest.raises(CredentialsValidateFailedError): model.validate_credentials( model="google/mt5-base", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": "invalid_key", "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL"), "task_type": "text2text-generation", }, ) model.validate_credentials( model="google/mt5-base", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL"), "task_type": "text2text-generation", }, ) @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_inference_endpoints_text2text_generation_invoke_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model="google/mt5-base", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL"), "task_type": "text2text-generation", }, prompt_messages=[UserPromptMessage(content="Who are you?")], model_parameters={ "temperature": 1.0, "top_k": 2, "top_p": 0.5, }, stop=["How"], stream=False, user="abc-123", ) assert isinstance(response, LLMResult) assert len(response.message.content) > 0 @pytest.mark.parametrize("setup_huggingface_mock", [["none"]], indirect=True) def test_inference_endpoints_text2text_generation_invoke_stream_model(setup_huggingface_mock): model = HuggingfaceHubLargeLanguageModel() response = model.invoke( model="google/mt5-base", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL"), "task_type": "text2text-generation", }, prompt_messages=[UserPromptMessage(content="Who are you?")], model_parameters={ "temperature": 1.0, "top_k": 2, "top_p": 0.5, }, stop=["How"], stream=True, user="abc-123", ) assert isinstance(response, Generator) for chunk in response: assert isinstance(chunk, LLMResultChunk) assert isinstance(chunk.delta, LLMResultChunkDelta) assert isinstance(chunk.delta.message, AssistantPromptMessage) assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True def test_get_num_tokens(): model = HuggingfaceHubLargeLanguageModel() num_tokens = model.get_num_tokens( model="google/mt5-base", credentials={ "huggingfacehub_api_type": "inference_endpoints", "huggingfacehub_api_token": os.environ.get("HUGGINGFACE_API_KEY"), "huggingfacehub_endpoint_url": os.environ.get("HUGGINGFACE_TEXT2TEXT_GEN_ENDPOINT_URL"), "task_type": "text2text-generation", }, prompt_messages=[UserPromptMessage(content="Hello World!")], ) assert num_tokens == 7