Browse Source

Feat/add-NVIDIA-as-a-new-model-provider (#2900)

Joshua 1 year ago
parent
commit
518c1ceb94

+ 1 - 0
api/core/model_runtime/model_providers/_position.yaml

@@ -2,6 +2,7 @@
 - anthropic
 - azure_openai
 - google
+- nvidia
 - cohere
 - bedrock
 - togetherai

+ 0 - 0
api/core/model_runtime/model_providers/nvidia/__init__.py


BIN
api/core/model_runtime/model_providers/nvidia/_assets/icon_l_en.png


File diff suppressed because it is too large
+ 3 - 0
api/core/model_runtime/model_providers/nvidia/_assets/icon_s_en.svg


+ 4 - 0
api/core/model_runtime/model_providers/nvidia/llm/_position.yaml

@@ -0,0 +1,4 @@
+- google/gemma-7b
+- meta/llama2-70b
+- mistralai/mixtral-8x7b-instruct-v0.1
+- fuyu-8b

+ 27 - 0
api/core/model_runtime/model_providers/nvidia/llm/fuyu-8b.yaml

@@ -0,0 +1,27 @@
+model: fuyu-8b
+label:
+  zh_Hans: fuyu-8b
+  en_US: fuyu-8b
+model_type: llm
+features:
+  - agent-thought
+  - vision
+model_properties:
+  mode: chat
+  context_size: 16000
+parameter_rules:
+  - name: temperature
+    use_template: temperature
+    default: 0.2
+    min: 0.1
+    max: 1
+  - name: top_p
+    use_template: top_p
+    default: 0.7
+    min: 0.1
+    max: 1
+  - name: max_tokens
+    use_template: max_tokens
+    default: 512
+    min: 1
+    max: 1024

+ 30 - 0
api/core/model_runtime/model_providers/nvidia/llm/gemma-7b.yaml

@@ -0,0 +1,30 @@
+model: google/gemma-7b
+label:
+  zh_Hans: google/gemma-7b
+  en_US: google/gemma-7b
+model_type: llm
+features:
+  - agent-thought
+model_properties:
+  mode: chat
+  context_size: 8192
+parameter_rules:
+  - name: temperature
+    use_template: temperature
+  - name: top_p
+    use_template: top_p
+  - name: max_tokens
+    use_template: max_tokens
+    default: 512
+    min: 1
+    max: 1024
+  - name: frequency_penalty
+    use_template: frequency_penalty
+    min: -2
+    max: 2
+    default: 0
+  - name: presence_penalty
+    use_template: presence_penalty
+    min: -2
+    max: 2
+    default: 0

+ 30 - 0
api/core/model_runtime/model_providers/nvidia/llm/llama2-70b.yaml

@@ -0,0 +1,30 @@
+model: meta/llama2-70b
+label:
+  zh_Hans: meta/llama2-70b
+  en_US: meta/llama2-70b
+model_type: llm
+features:
+  - agent-thought
+model_properties:
+  mode: chat
+  context_size: 32768
+parameter_rules:
+  - name: temperature
+    use_template: temperature
+  - name: top_p
+    use_template: top_p
+  - name: max_tokens
+    use_template: max_tokens
+    default: 512
+    min: 1
+    max: 1024
+  - name: frequency_penalty
+    use_template: frequency_penalty
+    min: -2
+    max: 2
+    default: 0
+  - name: presence_penalty
+    use_template: presence_penalty
+    min: -2
+    max: 2
+    default: 0

+ 247 - 0
api/core/model_runtime/model_providers/nvidia/llm/llm.py

@@ -0,0 +1,247 @@
+import json
+from collections.abc import Generator
+from typing import Optional, Union
+
+import requests
+from yarl import URL
+
+from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
+from core.model_runtime.entities.message_entities import (
+    PromptMessage,
+    PromptMessageContentType,
+    PromptMessageFunction,
+    PromptMessageTool,
+    UserPromptMessage,
+)
+from core.model_runtime.errors.invoke import InvokeError
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
+from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel
+from core.model_runtime.utils import helper
+
+
+class NVIDIALargeLanguageModel(OAIAPICompatLargeLanguageModel):
+    MODEL_SUFFIX_MAP = {
+        'fuyu-8b': 'vlm/adept/fuyu-8b',
+        'mistralai/mixtral-8x7b-instruct-v0.1': '',
+        'google/gemma-7b': '',
+        'meta/llama2-70b': ''
+    }
+
+    def _invoke(self, model: str, credentials: dict,
+                prompt_messages: list[PromptMessage], model_parameters: dict,
+                tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
+                stream: bool = True, user: Optional[str] = None) \
+            -> Union[LLMResult, Generator]:
+        
+        self._add_custom_parameters(credentials, model)
+        prompt_messages = self._transform_prompt_messages(prompt_messages)
+        stop = []
+        user = None
+
+        return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
+
+    def _transform_prompt_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
+        """
+        Handle Image transform
+        """
+        for i, p in enumerate(prompt_messages):
+            if isinstance(p, UserPromptMessage) and isinstance(p.content, list):
+                content = p.content
+                content_text = ''
+                for prompt_content in content:
+                    if prompt_content.type == PromptMessageContentType.TEXT:
+                        content_text += prompt_content.data
+                    else:
+                        content_text += f' <img src="{prompt_content.data}" />'
+
+                prompt_message = UserPromptMessage(
+                    content=content_text
+                )
+                prompt_messages[i] = prompt_message
+        return prompt_messages
+
+    def validate_credentials(self, model: str, credentials: dict) -> None:
+        self._add_custom_parameters(credentials, model)
+        self._validate_credentials(model, credentials)
+
+    def _add_custom_parameters(self, credentials: dict, model: str) -> None:
+        credentials['mode'] = 'chat'
+        
+        if self.MODEL_SUFFIX_MAP[model]:
+            credentials['server_url'] = f'https://ai.api.nvidia.com/v1/{self.MODEL_SUFFIX_MAP[model]}'
+            credentials.pop('endpoint_url')
+        else:
+            credentials['endpoint_url'] = 'https://integrate.api.nvidia.com/v1'
+
+        credentials['stream_mode_delimiter'] = '\n'
+
+    def _validate_credentials(self, model: str, credentials: dict) -> None:
+        """
+        Validate model credentials using requests to ensure compatibility with all providers following OpenAI's API standard.
+
+        :param model: model name
+        :param credentials: model credentials
+        :return:
+        """
+        try:
+            headers = {
+                'Content-Type': 'application/json'
+            }
+
+            api_key = credentials.get('api_key')
+            if api_key:
+                headers["Authorization"] = f"Bearer {api_key}"
+
+            endpoint_url = credentials['endpoint_url'] if 'endpoint_url' in credentials else None
+            if endpoint_url and not endpoint_url.endswith('/'):
+                endpoint_url += '/'
+            server_url = credentials['server_url'] if 'server_url' in credentials else None
+
+            # prepare the payload for a simple ping to the model
+            data = {
+                'model': model,
+                'max_tokens': 5
+            }
+
+            completion_type = LLMMode.value_of(credentials['mode'])
+
+            if completion_type is LLMMode.CHAT:
+                data['messages'] = [
+                    {
+                        "role": "user",
+                        "content": "ping"
+                    },
+                ]
+                if 'endpoint_url' in credentials:
+                    endpoint_url = str(URL(endpoint_url) / 'chat' / 'completions')
+                elif 'server_url' in credentials:
+                    endpoint_url = server_url
+            elif completion_type is LLMMode.COMPLETION:
+                data['prompt'] = 'ping'
+                if 'endpoint_url' in credentials:
+                    endpoint_url = str(URL(endpoint_url) / 'completions')
+                elif 'server_url' in credentials:
+                    endpoint_url = server_url
+            else:
+                raise ValueError("Unsupported completion type for model configuration.")
+
+            # send a post request to validate the credentials
+            response = requests.post(
+                endpoint_url,
+                headers=headers,
+                json=data,
+                timeout=(10, 60)
+            )
+
+            if response.status_code != 200:
+                raise CredentialsValidateFailedError(
+                    f'Credentials validation failed with status code {response.status_code}')
+
+            try:
+                json_result = response.json()
+            except json.JSONDecodeError as e:
+                raise CredentialsValidateFailedError('Credentials validation failed: JSON decode error')
+        except CredentialsValidateFailedError:
+            raise
+        except Exception as ex:
+            raise CredentialsValidateFailedError(f'An error occurred during credentials validation: {str(ex)}')
+
+    def _generate(self, model: str, credentials: dict, prompt_messages: list[PromptMessage], model_parameters: dict,
+                  tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
+                  stream: bool = True, \
+                  user: Optional[str] = None) -> Union[LLMResult, Generator]:
+        """
+        Invoke llm completion model
+
+        :param model: model name
+        :param credentials: credentials
+        :param prompt_messages: prompt messages
+        :param model_parameters: model parameters
+        :param stop: stop words
+        :param stream: is stream response
+        :param user: unique user id
+        :return: full response or stream response chunk generator result
+        """
+        headers = {
+            'Content-Type': 'application/json',
+            'Accept-Charset': 'utf-8',
+        }
+
+        api_key = credentials.get('api_key')
+        if api_key:
+            headers['Authorization'] = f'Bearer {api_key}'
+
+        if stream:
+            headers['Accept'] = 'text/event-stream'
+
+        endpoint_url = credentials['endpoint_url'] if 'endpoint_url' in credentials else None
+        if endpoint_url and not endpoint_url.endswith('/'):
+            endpoint_url += '/'
+        server_url = credentials['server_url'] if 'server_url' in credentials else None
+
+        data = {
+            "model": model,
+            "stream": stream,
+            **model_parameters
+        }
+
+        completion_type = LLMMode.value_of(credentials['mode'])
+
+        if completion_type is LLMMode.CHAT:
+            if 'endpoint_url' in credentials:
+                endpoint_url = str(URL(endpoint_url) / 'chat' / 'completions')
+            elif 'server_url' in credentials:
+                endpoint_url = server_url
+            data['messages'] = [self._convert_prompt_message_to_dict(m) for m in prompt_messages]
+        elif completion_type is LLMMode.COMPLETION:
+            data['prompt'] = 'ping'
+            if 'endpoint_url' in credentials:
+                endpoint_url = str(URL(endpoint_url) / 'completions')
+            elif 'server_url' in credentials:
+                endpoint_url = server_url
+        else:
+            raise ValueError("Unsupported completion type for model configuration.")
+
+
+        # annotate tools with names, descriptions, etc.
+        function_calling_type = credentials.get('function_calling_type', 'no_call')
+        formatted_tools = []
+        if tools:
+            if function_calling_type == 'function_call':
+                data['functions'] = [{
+                    "name": tool.name,
+                    "description": tool.description,
+                    "parameters": tool.parameters
+                } for tool in tools]
+            elif function_calling_type == 'tool_call':
+                data["tool_choice"] = "auto"
+
+                for tool in tools:
+                    formatted_tools.append(helper.dump_model(PromptMessageFunction(function=tool)))
+
+                data["tools"] = formatted_tools
+
+        if stop:
+            data["stop"] = stop
+
+        if user:
+            data["user"] = user
+
+        response = requests.post(
+            endpoint_url,
+            headers=headers,
+            json=data,
+            timeout=(10, 60),
+            stream=stream
+        )
+
+        if response.encoding is None or response.encoding == 'ISO-8859-1':
+            response.encoding = 'utf-8'
+
+        if not response.ok:
+            raise InvokeError(f"API request failed with status code {response.status_code}: {response.text}")
+
+        if stream:
+            return self._handle_generate_stream_response(model, credentials, response, prompt_messages)
+
+        return self._handle_generate_response(model, credentials, response, prompt_messages)

+ 30 - 0
api/core/model_runtime/model_providers/nvidia/llm/mistralai_mixtral-8x7b-instruct-v0.1.yaml

@@ -0,0 +1,30 @@
+model: mistralai/mixtral-8x7b-instruct-v0.1
+label:
+  zh_Hans: mistralai/mixtral-8x7b-instruct-v0.1
+  en_US: mistralai/mixtral-8x7b-instruct-v0.1
+model_type: llm
+features:
+  - agent-thought
+model_properties:
+  mode: chat
+  context_size: 32768
+parameter_rules:
+  - name: temperature
+    use_template: temperature
+  - name: top_p
+    use_template: top_p
+  - name: max_tokens
+    use_template: max_tokens
+    default: 512
+    min: 1
+    max: 1024
+  - name: frequency_penalty
+    use_template: frequency_penalty
+    min: -2
+    max: 2
+    default: 0
+  - name: presence_penalty
+    use_template: presence_penalty
+    min: -2
+    max: 2
+    default: 0

+ 30 - 0
api/core/model_runtime/model_providers/nvidia/nvidia.py

@@ -0,0 +1,30 @@
+import logging
+
+from core.model_runtime.entities.model_entities import ModelType
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
+from core.model_runtime.model_providers.__base.model_provider import ModelProvider
+
+logger = logging.getLogger(__name__)
+
+
+class MistralAIProvider(ModelProvider):
+
+    def validate_provider_credentials(self, credentials: dict) -> None:
+        """
+        Validate provider credentials
+        if validate failed, raise exception
+
+        :param credentials: provider credentials, credentials form defined in `provider_credential_schema`.
+        """
+        try:
+            model_instance = self.get_model_instance(ModelType.LLM)
+
+            model_instance.validate_credentials(
+                model='mistralai/mixtral-8x7b-instruct-v0.1',
+                credentials=credentials
+            )
+        except CredentialsValidateFailedError as ex:
+            raise ex
+        except Exception as ex:
+            logger.exception(f'{self.get_provider_schema().provider} credentials validate failed')
+            raise ex

+ 30 - 0
api/core/model_runtime/model_providers/nvidia/nvidia.yaml

@@ -0,0 +1,30 @@
+provider: nvidia
+label:
+  en_US: NVIDIA
+icon_small:
+  en_US: icon_s_en.svg
+icon_large:
+  en_US: icon_l_en.png
+background: "#FFFFFF"
+help:
+  title:
+    en_US: Get your API Key from NVIDIA
+    zh_Hans: 从 NVIDIA 获取 API Key
+  url:
+    en_US: https://build.nvidia.com/explore/discover
+supported_model_types:
+  - llm
+  - text-embedding
+  - rerank
+configurate_methods:
+  - predefined-model
+provider_credential_schema:
+  credential_form_schemas:
+    - variable: api_key
+      label:
+        en_US: API Key
+      type: secret-input
+      required: true
+      placeholder:
+        zh_Hans: 在此输入您的 API Key
+        en_US: Enter your API Key

+ 0 - 0
api/core/model_runtime/model_providers/nvidia/rerank/__init__.py


+ 4 - 0
api/core/model_runtime/model_providers/nvidia/rerank/rerank-qa-mistral-4b.yaml

@@ -0,0 +1,4 @@
+model: nv-rerank-qa-mistral-4b:1
+model_type: rerank
+model_properties:
+  context_size: 8192

+ 112 - 0
api/core/model_runtime/model_providers/nvidia/rerank/rerank.py

@@ -0,0 +1,112 @@
+from math import exp
+from typing import Optional
+
+import requests
+
+from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
+from core.model_runtime.errors.invoke import (
+    InvokeAuthorizationError,
+    InvokeBadRequestError,
+    InvokeConnectionError,
+    InvokeError,
+    InvokeRateLimitError,
+    InvokeServerUnavailableError,
+)
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
+from core.model_runtime.model_providers.__base.rerank_model import RerankModel
+
+
+class NvidiaRerankModel(RerankModel):
+    """
+    Model class for NVIDIA rerank model.
+    """
+
+    def _sigmoid(self, logit: float) -> float:
+        return 1/(1+exp(-logit))
+
+    def _invoke(self, model: str, credentials: dict,
+                query: str, docs: list[str], score_threshold: Optional[float] = None, top_n: Optional[int] = None,
+                user: Optional[str] = None) -> RerankResult:
+        """
+        Invoke rerank model
+
+        :param model: model name
+        :param credentials: model credentials
+        :param query: search query
+        :param docs: docs for reranking
+        :param score_threshold: score threshold
+        :param top_n: top n documents to return
+        :param user: unique user id
+        :return: rerank result
+        """
+        if len(docs) == 0:
+            return RerankResult(model=model, docs=[])
+
+        try:
+            invoke_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/reranking"
+
+            headers = {
+                "Authorization": f"Bearer {credentials.get('api_key')}",
+                "Accept": "application/json",
+            }
+            payload = {
+                "model": model,
+                "query": {"text": query},
+                "passages": [{"text": doc} for doc in docs],
+            }
+
+            session = requests.Session()
+            response = session.post(invoke_url, headers=headers, json=payload)
+            response.raise_for_status()
+            results = response.json()
+
+            rerank_documents = []
+            for result in results['rankings']:
+                index = result['index']
+                logit = result['logit']
+                rerank_document = RerankDocument(
+                    index=index,
+                    text=docs[index],
+                    score=self._sigmoid(logit),
+                )
+
+                rerank_documents.append(rerank_document)
+
+            return RerankResult(model=model, docs=rerank_documents)
+        except requests.HTTPError as e:
+            raise InvokeServerUnavailableError(str(e))
+
+    def validate_credentials(self, model: str, credentials: dict) -> None:
+        """
+        Validate model credentials
+
+        :param model: model name
+        :param credentials: model credentials
+        :return:
+        """
+        try:
+            self._invoke(
+                model=model,
+                credentials=credentials,
+                query="What is the GPU memory bandwidth of H100 SXM?",
+                docs=[
+                    "Example doc 1",
+                    "Example doc 2",
+                    "Example doc 3",
+                ],
+            )
+        except Exception as ex:
+            raise CredentialsValidateFailedError(str(ex))
+
+    @property
+    def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
+        """
+        Map model invoke error to unified error
+        """
+        return {
+            InvokeConnectionError: [requests.ConnectionError],
+            InvokeServerUnavailableError: [requests.HTTPError],
+            InvokeRateLimitError: [],
+            InvokeAuthorizationError: [requests.HTTPError],
+            InvokeBadRequestError: [requests.RequestException]
+        }

+ 0 - 0
api/core/model_runtime/model_providers/nvidia/text_embedding/__init__.py


+ 5 - 0
api/core/model_runtime/model_providers/nvidia/text_embedding/embed-qa-4.yaml

@@ -0,0 +1,5 @@
+model: NV-Embed-QA
+model_type: text-embedding
+model_properties:
+  context_size: 512
+  max_chunks: 1

+ 172 - 0
api/core/model_runtime/model_providers/nvidia/text_embedding/text_embedding.py

@@ -0,0 +1,172 @@
+import time
+from json import JSONDecodeError, dumps
+from typing import Optional
+
+from requests import post
+
+from core.model_runtime.entities.model_entities import PriceType
+from core.model_runtime.entities.text_embedding_entities import EmbeddingUsage, TextEmbeddingResult
+from core.model_runtime.errors.invoke import (
+    InvokeAuthorizationError,
+    InvokeBadRequestError,
+    InvokeConnectionError,
+    InvokeError,
+    InvokeRateLimitError,
+    InvokeServerUnavailableError,
+)
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
+from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
+
+
+class NvidiaTextEmbeddingModel(TextEmbeddingModel):
+    """
+    Model class for Nvidia text embedding model.
+    """
+    api_base: str = 'https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings'
+    models: list[str] = ['NV-Embed-QA']
+
+    def _invoke(self, model: str, credentials: dict,
+                texts: list[str], user: Optional[str] = None) \
+            -> TextEmbeddingResult:
+        """
+        Invoke text embedding model
+
+        :param model: model name
+        :param credentials: model credentials
+        :param texts: texts to embed
+        :param user: unique user id
+        :return: embeddings result
+        """
+        api_key = credentials['api_key']
+        if model not in self.models:
+            raise InvokeBadRequestError('Invalid model name')
+        if not api_key:
+            raise CredentialsValidateFailedError('api_key is required')
+        url = self.api_base
+        headers = {
+            'Authorization': 'Bearer ' + api_key,
+            'Content-Type': 'application/json'
+        }
+
+        data = {
+            'model': model,
+            'input': texts[0], 
+            'input_type': 'query'
+        }
+
+        try:
+            response = post(url, headers=headers, data=dumps(data))
+        except Exception as e:
+            raise InvokeConnectionError(str(e))
+        
+        if response.status_code != 200:
+            try:
+                resp = response.json()
+                msg = resp['detail']
+                if response.status_code == 401:
+                    raise InvokeAuthorizationError(msg)
+                elif response.status_code == 429:
+                    raise InvokeRateLimitError(msg)
+                elif response.status_code == 500:
+                    raise InvokeServerUnavailableError(msg)
+                else:
+                    raise InvokeError(msg)
+            except JSONDecodeError as e:
+                raise InvokeServerUnavailableError(f"Failed to convert response to json: {e} with text: {response.text}")
+
+        try:
+            resp = response.json()
+            embeddings = resp['data']
+            usage = resp['usage']
+        except Exception as e:
+            raise InvokeServerUnavailableError(f"Failed to convert response to json: {e} with text: {response.text}")
+
+        usage = self._calc_response_usage(model=model, credentials=credentials, tokens=usage['total_tokens'])
+
+        result = TextEmbeddingResult(
+            model=model,
+            embeddings=[[
+                float(data) for data in x['embedding']
+            ] for x in embeddings],
+            usage=usage
+        )
+
+        return result
+
+    def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
+        """
+        Get number of tokens for given prompt messages
+
+        :param model: model name
+        :param credentials: model credentials
+        :param texts: texts to embed
+        :return:
+        """
+        num_tokens = 0
+        for text in texts:
+            # use JinaTokenizer to get num tokens
+            num_tokens += self._get_num_tokens_by_gpt2(text)
+        return num_tokens
+
+    def validate_credentials(self, model: str, credentials: dict) -> None:
+        """
+        Validate model credentials
+
+        :param model: model name
+        :param credentials: model credentials
+        :return:
+        """
+        try:
+            self._invoke(model=model, credentials=credentials, texts=['ping'])
+        except InvokeAuthorizationError:
+            raise CredentialsValidateFailedError('Invalid api key')
+
+    @property
+    def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
+        return {
+            InvokeConnectionError: [
+                InvokeConnectionError
+            ],
+            InvokeServerUnavailableError: [
+                InvokeServerUnavailableError
+            ],
+            InvokeRateLimitError: [
+                InvokeRateLimitError
+            ],
+            InvokeAuthorizationError: [
+                InvokeAuthorizationError
+            ],
+            InvokeBadRequestError: [
+                KeyError
+            ]
+        }
+    
+    def _calc_response_usage(self, model: str, credentials: dict, tokens: int) -> EmbeddingUsage:
+        """
+        Calculate response usage
+
+        :param model: model name
+        :param credentials: model credentials
+        :param tokens: input tokens
+        :return: usage
+        """
+        # get input price info
+        input_price_info = self.get_price(
+            model=model,
+            credentials=credentials,
+            price_type=PriceType.INPUT,
+            tokens=tokens
+        )
+
+        # transform usage
+        usage = EmbeddingUsage(
+            tokens=tokens,
+            total_tokens=tokens,
+            unit_price=input_price_info.unit_price,
+            price_unit=input_price_info.unit,
+            total_price=input_price_info.total_amount,
+            currency=input_price_info.currency,
+            latency=time.perf_counter() - self.started_at
+        )
+
+        return usage