Переглянути джерело

feat: support backwards invoke summary

Yeuoly 8 місяців тому
батько
коміт
45f8651a3d

+ 20 - 0
api/controllers/inner_api/plugin/plugin.py

@@ -19,6 +19,7 @@ from core.plugin.entities.request import (
     RequestInvokeQuestionClassifierNode,
     RequestInvokeRerank,
     RequestInvokeSpeech2Text,
+    RequestInvokeSummary,
     RequestInvokeTextEmbedding,
     RequestInvokeTool,
     RequestInvokeTTS,
@@ -230,6 +231,24 @@ class PluginInvokeEncryptApi(Resource):
             return BaseBackwardsInvocationResponse(error=str(e)).model_dump()
 
 
+class PluginInvokeSummaryApi(Resource):
+    @setup_required
+    @plugin_inner_api_only
+    @get_tenant
+    @plugin_data(payload_type=RequestInvokeSummary)
+    def post(self, user_id: str, tenant_model: Tenant, payload: RequestInvokeSummary):
+        try:
+            return BaseBackwardsInvocationResponse(
+                data=PluginModelBackwardsInvocation.invoke_summary(
+                    user_id=user_id,
+                    tenant=tenant_model,
+                    payload=payload,
+                )
+            ).model_dump()
+        except Exception as e:
+            return BaseBackwardsInvocationResponse(error=str(e)).model_dump()
+
+
 api.add_resource(PluginInvokeLLMApi, "/invoke/llm")
 api.add_resource(PluginInvokeTextEmbeddingApi, "/invoke/text-embedding")
 api.add_resource(PluginInvokeRerankApi, "/invoke/rerank")
@@ -241,3 +260,4 @@ api.add_resource(PluginInvokeParameterExtractorNodeApi, "/invoke/parameter-extra
 api.add_resource(PluginInvokeQuestionClassifierNodeApi, "/invoke/question-classifier")
 api.add_resource(PluginInvokeAppApi, "/invoke/app")
 api.add_resource(PluginInvokeEncryptApi, "/invoke/encrypt")
+api.add_resource(PluginInvokeSummaryApi, "/invoke/summary")

+ 144 - 0
api/core/plugin/backwards_invocation/model.py

@@ -4,15 +4,23 @@ from collections.abc import Generator
 
 from core.model_manager import ModelManager
 from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
+from core.model_runtime.entities.message_entities import (
+    PromptMessage,
+    SystemPromptMessage,
+    UserPromptMessage,
+)
 from core.plugin.backwards_invocation.base import BaseBackwardsInvocation
 from core.plugin.entities.request import (
     RequestInvokeLLM,
     RequestInvokeModeration,
     RequestInvokeRerank,
     RequestInvokeSpeech2Text,
+    RequestInvokeSummary,
     RequestInvokeTextEmbedding,
     RequestInvokeTTS,
 )
+from core.tools.entities.tool_entities import ToolProviderType
+from core.tools.utils.model_invocation_utils import ModelInvocationUtils
 from core.workflow.nodes.llm.llm_node import LLMNode
 from models.account import Tenant
 
@@ -175,3 +183,139 @@ class PluginModelBackwardsInvocation(BaseBackwardsInvocation):
         return {
             "result": response,
         }
+
+    @classmethod
+    def get_system_model_max_tokens(cls, tenant_id: str) -> int:
+        """
+        get system model max tokens
+        """
+        return ModelInvocationUtils.get_max_llm_context_tokens(tenant_id=tenant_id)
+
+    @classmethod
+    def get_prompt_tokens(cls, tenant_id: str, prompt_messages: list[PromptMessage]) -> int:
+        """
+        get prompt tokens
+        """
+        return ModelInvocationUtils.calculate_tokens(tenant_id=tenant_id, prompt_messages=prompt_messages)
+
+    @classmethod
+    def invoke_system_model(
+        cls,
+        user_id: str,
+        tenant: Tenant,
+        prompt_messages: list[PromptMessage],
+    ) -> LLMResult:
+        """
+        invoke system model
+        """
+        return ModelInvocationUtils.invoke(
+            user_id=user_id,
+            tenant_id=tenant.id,
+            tool_type=ToolProviderType.PLUGIN,
+            tool_name="plugin",
+            prompt_messages=prompt_messages,
+        )
+
+    @classmethod
+    def invoke_summary(cls, user_id: str, tenant: Tenant, payload: RequestInvokeSummary):
+        """
+        invoke summary
+        """
+        max_tokens = cls.get_system_model_max_tokens(tenant_id=tenant.id)
+        content = payload.text
+
+        SUMMARY_PROMPT = """You are a professional language researcher, you are interested in the language
+and you can quickly aimed at the main point of an webpage and reproduce it in your own words but 
+retain the original meaning and keep the key points. 
+however, the text you got is too long, what you got is possible a part of the text.
+Please summarize the text you got.
+
+Here is the extra instruction you need to follow:
+<extra_instruction>
+{payload.instruction}
+</extra_instruction>
+"""
+
+        if (
+            cls.get_prompt_tokens(
+                tenant_id=tenant.id,
+                prompt_messages=[UserPromptMessage(content=content)],
+            )
+            < max_tokens * 0.6
+        ):
+            return content
+
+        def get_prompt_tokens(content: str) -> int:
+            return cls.get_prompt_tokens(
+                tenant_id=tenant.id,
+                prompt_messages=[
+                    SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
+                    UserPromptMessage(content=content),
+                ],
+            )
+
+        def summarize(content: str) -> str:
+            summary = cls.invoke_system_model(
+                user_id=user_id,
+                tenant=tenant,
+                prompt_messages=[
+                    SystemPromptMessage(content=SUMMARY_PROMPT.replace("{payload.instruction}", payload.instruction)),
+                    UserPromptMessage(content=content),
+                ],
+            )
+
+            assert isinstance(summary.message.content, str)
+            return summary.message.content
+
+        lines = content.split("\n")
+        new_lines = []
+        # split long line into multiple lines
+        for i in range(len(lines)):
+            line = lines[i]
+            if not line.strip():
+                continue
+            if len(line) < max_tokens * 0.5:
+                new_lines.append(line)
+            elif get_prompt_tokens(line) > max_tokens * 0.7:
+                while get_prompt_tokens(line) > max_tokens * 0.7:
+                    new_lines.append(line[: int(max_tokens * 0.5)])
+                    line = line[int(max_tokens * 0.5) :]
+                new_lines.append(line)
+            else:
+                new_lines.append(line)
+
+        # merge lines into messages with max tokens
+        messages: list[str] = []
+        for i in new_lines:
+            if len(messages) == 0:
+                messages.append(i)
+            else:
+                if len(messages[-1]) + len(i) < max_tokens * 0.5:
+                    messages[-1] += i
+                if get_prompt_tokens(messages[-1] + i) > max_tokens * 0.7:
+                    messages.append(i)
+                else:
+                    messages[-1] += i
+
+        summaries = []
+        for i in range(len(messages)):
+            message = messages[i]
+            summary = summarize(message)
+            summaries.append(summary)
+
+        result = "\n".join(summaries)
+
+        if (
+            cls.get_prompt_tokens(
+                tenant_id=tenant.id,
+                prompt_messages=[UserPromptMessage(content=result)],
+            )
+            > max_tokens * 0.7
+        ):
+            return cls.invoke_summary(
+                user_id=user_id,
+                tenant=tenant,
+                payload=RequestInvokeSummary(text=result, instruction=payload.instruction),
+            )
+
+        return result

+ 9 - 0
api/core/plugin/entities/request.py

@@ -186,3 +186,12 @@ class RequestInvokeEncrypt(BaseModel):
     identity: str
     data: dict = Field(default_factory=dict)
     config: list[BasicProviderConfig] = Field(default_factory=list)
+
+
+class RequestInvokeSummary(BaseModel):
+    """
+    Request to summary
+    """
+
+    text: str
+    instruction: str