|
@@ -0,0 +1,132 @@
|
|
|
+import time
|
|
|
+from typing import Optional
|
|
|
+
|
|
|
+import dashscope
|
|
|
+
|
|
|
+from core.model_runtime.entities.model_entities import PriceType
|
|
|
+from core.model_runtime.entities.text_embedding_entities import (
|
|
|
+ EmbeddingUsage,
|
|
|
+ TextEmbeddingResult,
|
|
|
+)
|
|
|
+from core.model_runtime.errors.validate import CredentialsValidateFailedError
|
|
|
+from core.model_runtime.model_providers.__base.text_embedding_model import (
|
|
|
+ TextEmbeddingModel,
|
|
|
+)
|
|
|
+from core.model_runtime.model_providers.tongyi._common import _CommonTongyi
|
|
|
+
|
|
|
+
|
|
|
+class TongyiTextEmbeddingModel(_CommonTongyi, TextEmbeddingModel):
|
|
|
+ """
|
|
|
+ Model class for Tongyi text embedding model.
|
|
|
+ """
|
|
|
+
|
|
|
+ def _invoke(
|
|
|
+ self,
|
|
|
+ model: str,
|
|
|
+ credentials: dict,
|
|
|
+ texts: list[str],
|
|
|
+ user: Optional[str] = None,
|
|
|
+ ) -> TextEmbeddingResult:
|
|
|
+ """
|
|
|
+ Invoke text embedding model
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param texts: texts to embed
|
|
|
+ :param user: unique user id
|
|
|
+ :return: embeddings result
|
|
|
+ """
|
|
|
+ credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
+ dashscope.api_key = credentials_kwargs["dashscope_api_key"]
|
|
|
+ embeddings, embedding_used_tokens = self.embed_documents(model, texts)
|
|
|
+
|
|
|
+ return TextEmbeddingResult(
|
|
|
+ embeddings=embeddings,
|
|
|
+ usage=self._calc_response_usage(model, credentials_kwargs, embedding_used_tokens),
|
|
|
+ model=model
|
|
|
+ )
|
|
|
+
|
|
|
+ def get_num_tokens(self, model: str, credentials: dict, texts: list[str]) -> int:
|
|
|
+ """
|
|
|
+ Get number of tokens for given prompt messages
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :param texts: texts to embed
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ if len(texts) == 0:
|
|
|
+ return 0
|
|
|
+ total_num_tokens = 0
|
|
|
+ for text in texts:
|
|
|
+ total_num_tokens += self._get_num_tokens_by_gpt2(text)
|
|
|
+
|
|
|
+ return total_num_tokens
|
|
|
+
|
|
|
+ def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
+ """
|
|
|
+ Validate model credentials
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param credentials: model credentials
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ try:
|
|
|
+ # transform credentials to kwargs for model instance
|
|
|
+ credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
+ dashscope.api_key = credentials_kwargs["dashscope_api_key"]
|
|
|
+ # call embedding model
|
|
|
+ self.embed_documents(model=model, texts=["ping"])
|
|
|
+ except Exception as ex:
|
|
|
+ raise CredentialsValidateFailedError(str(ex))
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def embed_documents(model: str, texts: list[str]) -> tuple[list[list[float]], int]:
|
|
|
+ """Call out to Tongyi's embedding endpoint.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ texts: The list of texts to embed.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ List of embeddings, one for each text, and tokens usage.
|
|
|
+ """
|
|
|
+ embeddings = []
|
|
|
+ embedding_used_tokens = 0
|
|
|
+ for text in texts:
|
|
|
+ response = dashscope.TextEmbedding.call(model=model, input=text, text_type="document")
|
|
|
+ data = response.output["embeddings"][0]
|
|
|
+ embeddings.append(data["embedding"])
|
|
|
+ embedding_used_tokens += response.usage["total_tokens"]
|
|
|
+
|
|
|
+ return [list(map(float, e)) for e in embeddings], embedding_used_tokens
|
|
|
+
|
|
|
+ def _calc_response_usage(
|
|
|
+ self, model: str, credentials: dict, tokens: int
|
|
|
+ ) -> EmbeddingUsage:
|
|
|
+ """
|
|
|
+ Calculate response usage
|
|
|
+
|
|
|
+ :param model: model name
|
|
|
+ :param tokens: input tokens
|
|
|
+ :return: usage
|
|
|
+ """
|
|
|
+ # get input price info
|
|
|
+ input_price_info = self.get_price(
|
|
|
+ model=model,
|
|
|
+ credentials=credentials,
|
|
|
+ price_type=PriceType.INPUT,
|
|
|
+ tokens=tokens
|
|
|
+ )
|
|
|
+
|
|
|
+ # transform usage
|
|
|
+ usage = EmbeddingUsage(
|
|
|
+ tokens=tokens,
|
|
|
+ total_tokens=tokens,
|
|
|
+ unit_price=input_price_info.unit_price,
|
|
|
+ price_unit=input_price_info.unit,
|
|
|
+ total_price=input_price_info.total_amount,
|
|
|
+ currency=input_price_info.currency,
|
|
|
+ latency=time.perf_counter() - self.started_at
|
|
|
+ )
|
|
|
+
|
|
|
+ return usage
|