|
@@ -1,6 +1,5 @@
|
|
|
+import codecs
|
|
|
import json
|
|
|
-import logging
|
|
|
-import re
|
|
|
from collections.abc import Generator
|
|
|
from decimal import Decimal
|
|
|
from typing import Optional, Union, cast
|
|
@@ -39,8 +38,6 @@ from core.model_runtime.model_providers.__base.large_language_model import Large
|
|
|
from core.model_runtime.model_providers.openai_api_compatible._common import _CommonOaiApiCompat
|
|
|
from core.model_runtime.utils import helper
|
|
|
|
|
|
-logger = logging.getLogger(__name__)
|
|
|
-
|
|
|
|
|
|
class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
"""
|
|
@@ -100,7 +97,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
:param tools: tools for tool calling
|
|
|
:return:
|
|
|
"""
|
|
|
- return self._num_tokens_from_messages(model, prompt_messages, tools, credentials)
|
|
|
+ return self._num_tokens_from_messages(prompt_messages, tools, credentials)
|
|
|
|
|
|
def validate_credentials(self, model: str, credentials: dict) -> None:
|
|
|
"""
|
|
@@ -399,6 +396,73 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
|
|
|
return self._handle_generate_response(model, credentials, response, prompt_messages)
|
|
|
|
|
|
+ def _create_final_llm_result_chunk(
|
|
|
+ self,
|
|
|
+ index: int,
|
|
|
+ message: AssistantPromptMessage,
|
|
|
+ finish_reason: str,
|
|
|
+ usage: dict,
|
|
|
+ model: str,
|
|
|
+ prompt_messages: list[PromptMessage],
|
|
|
+ credentials: dict,
|
|
|
+ full_content: str,
|
|
|
+ ) -> LLMResultChunk:
|
|
|
+ # calculate num tokens
|
|
|
+ prompt_tokens = usage and usage.get("prompt_tokens")
|
|
|
+ if prompt_tokens is None:
|
|
|
+ prompt_tokens = self._num_tokens_from_string(text=prompt_messages[0].content)
|
|
|
+ completion_tokens = usage and usage.get("completion_tokens")
|
|
|
+ if completion_tokens is None:
|
|
|
+ completion_tokens = self._num_tokens_from_string(text=full_content)
|
|
|
+
|
|
|
+ # transform usage
|
|
|
+ usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
+
|
|
|
+ return LLMResultChunk(
|
|
|
+ model=model,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
|
|
|
+ )
|
|
|
+
|
|
|
+ def _get_tool_call(self, tool_call_id: str, tools_calls: list[AssistantPromptMessage.ToolCall]):
|
|
|
+ """
|
|
|
+ Get or create a tool call by ID
|
|
|
+
|
|
|
+ :param tool_call_id: tool call ID
|
|
|
+ :param tools_calls: list of existing tool calls
|
|
|
+ :return: existing or new tool call, updated tools_calls
|
|
|
+ """
|
|
|
+ if not tool_call_id:
|
|
|
+ return tools_calls[-1], tools_calls
|
|
|
+
|
|
|
+ tool_call = next((tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None)
|
|
|
+ if tool_call is None:
|
|
|
+ tool_call = AssistantPromptMessage.ToolCall(
|
|
|
+ id=tool_call_id,
|
|
|
+ type="function",
|
|
|
+ function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
|
|
|
+ )
|
|
|
+ tools_calls.append(tool_call)
|
|
|
+
|
|
|
+ return tool_call, tools_calls
|
|
|
+
|
|
|
+ def _increase_tool_call(
|
|
|
+ self, new_tool_calls: list[AssistantPromptMessage.ToolCall], tools_calls: list[AssistantPromptMessage.ToolCall]
|
|
|
+ ) -> list[AssistantPromptMessage.ToolCall]:
|
|
|
+ for new_tool_call in new_tool_calls:
|
|
|
+ # get tool call
|
|
|
+ tool_call, tools_calls = self._get_tool_call(new_tool_call.function.name, tools_calls)
|
|
|
+ # update tool call
|
|
|
+ if new_tool_call.id:
|
|
|
+ tool_call.id = new_tool_call.id
|
|
|
+ if new_tool_call.type:
|
|
|
+ tool_call.type = new_tool_call.type
|
|
|
+ if new_tool_call.function.name:
|
|
|
+ tool_call.function.name = new_tool_call.function.name
|
|
|
+ if new_tool_call.function.arguments:
|
|
|
+ tool_call.function.arguments += new_tool_call.function.arguments
|
|
|
+ return tools_calls
|
|
|
+
|
|
|
def _handle_generate_stream_response(
|
|
|
self, model: str, credentials: dict, response: requests.Response, prompt_messages: list[PromptMessage]
|
|
|
) -> Generator:
|
|
@@ -411,71 +475,15 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
:param prompt_messages: prompt messages
|
|
|
:return: llm response chunk generator
|
|
|
"""
|
|
|
- full_assistant_content = ""
|
|
|
chunk_index = 0
|
|
|
-
|
|
|
- def create_final_llm_result_chunk(
|
|
|
- id: Optional[str], index: int, message: AssistantPromptMessage, finish_reason: str, usage: dict
|
|
|
- ) -> LLMResultChunk:
|
|
|
- # calculate num tokens
|
|
|
- prompt_tokens = usage and usage.get("prompt_tokens")
|
|
|
- if prompt_tokens is None:
|
|
|
- prompt_tokens = self._num_tokens_from_string(model, prompt_messages[0].content)
|
|
|
- completion_tokens = usage and usage.get("completion_tokens")
|
|
|
- if completion_tokens is None:
|
|
|
- completion_tokens = self._num_tokens_from_string(model, full_assistant_content)
|
|
|
-
|
|
|
- # transform usage
|
|
|
- usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
-
|
|
|
- return LLMResultChunk(
|
|
|
- id=id,
|
|
|
- model=model,
|
|
|
- prompt_messages=prompt_messages,
|
|
|
- delta=LLMResultChunkDelta(index=index, message=message, finish_reason=finish_reason, usage=usage),
|
|
|
- )
|
|
|
-
|
|
|
+ full_assistant_content = ""
|
|
|
+ tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
|
|
+ finish_reason = None
|
|
|
+ usage = None
|
|
|
+ is_reasoning_started = False
|
|
|
# delimiter for stream response, need unicode_escape
|
|
|
- import codecs
|
|
|
-
|
|
|
delimiter = credentials.get("stream_mode_delimiter", "\n\n")
|
|
|
delimiter = codecs.decode(delimiter, "unicode_escape")
|
|
|
-
|
|
|
- tools_calls: list[AssistantPromptMessage.ToolCall] = []
|
|
|
-
|
|
|
- def increase_tool_call(new_tool_calls: list[AssistantPromptMessage.ToolCall]):
|
|
|
- def get_tool_call(tool_call_id: str):
|
|
|
- if not tool_call_id:
|
|
|
- return tools_calls[-1]
|
|
|
-
|
|
|
- tool_call = next((tool_call for tool_call in tools_calls if tool_call.id == tool_call_id), None)
|
|
|
- if tool_call is None:
|
|
|
- tool_call = AssistantPromptMessage.ToolCall(
|
|
|
- id=tool_call_id,
|
|
|
- type="function",
|
|
|
- function=AssistantPromptMessage.ToolCall.ToolCallFunction(name="", arguments=""),
|
|
|
- )
|
|
|
- tools_calls.append(tool_call)
|
|
|
-
|
|
|
- return tool_call
|
|
|
-
|
|
|
- for new_tool_call in new_tool_calls:
|
|
|
- # get tool call
|
|
|
- tool_call = get_tool_call(new_tool_call.function.name)
|
|
|
- # update tool call
|
|
|
- if new_tool_call.id:
|
|
|
- tool_call.id = new_tool_call.id
|
|
|
- if new_tool_call.type:
|
|
|
- tool_call.type = new_tool_call.type
|
|
|
- if new_tool_call.function.name:
|
|
|
- tool_call.function.name = new_tool_call.function.name
|
|
|
- if new_tool_call.function.arguments:
|
|
|
- tool_call.function.arguments += new_tool_call.function.arguments
|
|
|
-
|
|
|
- finish_reason = None # The default value of finish_reason is None
|
|
|
- message_id, usage = None, None
|
|
|
- is_reasoning_started = False
|
|
|
- is_reasoning_started_tag = False
|
|
|
for chunk in response.iter_lines(decode_unicode=True, delimiter=delimiter):
|
|
|
chunk = chunk.strip()
|
|
|
if chunk:
|
|
@@ -490,12 +498,15 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
chunk_json: dict = json.loads(decoded_chunk)
|
|
|
# stream ended
|
|
|
except json.JSONDecodeError as e:
|
|
|
- yield create_final_llm_result_chunk(
|
|
|
- id=message_id,
|
|
|
+ yield self._create_final_llm_result_chunk(
|
|
|
index=chunk_index + 1,
|
|
|
message=AssistantPromptMessage(content=""),
|
|
|
finish_reason="Non-JSON encountered.",
|
|
|
usage=usage,
|
|
|
+ model=model,
|
|
|
+ credentials=credentials,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ full_content=full_assistant_content,
|
|
|
)
|
|
|
break
|
|
|
# handle the error here. for issue #11629
|
|
@@ -510,42 +521,14 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
|
|
|
choice = chunk_json["choices"][0]
|
|
|
finish_reason = chunk_json["choices"][0].get("finish_reason")
|
|
|
- message_id = chunk_json.get("id")
|
|
|
chunk_index += 1
|
|
|
|
|
|
if "delta" in choice:
|
|
|
delta = choice["delta"]
|
|
|
- delta_content = delta.get("content")
|
|
|
- if not delta_content:
|
|
|
- delta_content = ""
|
|
|
-
|
|
|
- if not is_reasoning_started_tag and "<think>" in delta_content:
|
|
|
- is_reasoning_started_tag = True
|
|
|
- delta_content = "> 💭 " + delta_content.replace("<think>", "")
|
|
|
- elif is_reasoning_started_tag and "</think>" in delta_content:
|
|
|
- delta_content = delta_content.replace("</think>", "") + "\n\n"
|
|
|
- is_reasoning_started_tag = False
|
|
|
- elif is_reasoning_started_tag:
|
|
|
- if "\n" in delta_content:
|
|
|
- delta_content = re.sub(r"\n(?!(>|\n))", "\n> ", delta_content)
|
|
|
-
|
|
|
- reasoning_content = delta.get("reasoning_content")
|
|
|
- if is_reasoning_started and not reasoning_content and not delta_content:
|
|
|
- delta_content = ""
|
|
|
- elif reasoning_content:
|
|
|
- if not is_reasoning_started:
|
|
|
- delta_content = "> 💭 " + reasoning_content
|
|
|
- is_reasoning_started = True
|
|
|
- else:
|
|
|
- delta_content = reasoning_content
|
|
|
-
|
|
|
- if "\n" in delta_content:
|
|
|
- delta_content = re.sub(r"\n(?!(>|\n))", "\n> ", delta_content)
|
|
|
- elif is_reasoning_started:
|
|
|
- # If we were in reasoning mode but now getting regular content,
|
|
|
- # add \n\n to close the reasoning block
|
|
|
- delta_content = "\n\n" + delta_content
|
|
|
- is_reasoning_started = False
|
|
|
+ delta_content, is_reasoning_started = self._wrap_thinking_by_reasoning_content(
|
|
|
+ delta, is_reasoning_started
|
|
|
+ )
|
|
|
+ delta_content = self._wrap_thinking_by_tag(delta_content)
|
|
|
|
|
|
assistant_message_tool_calls = None
|
|
|
|
|
@@ -559,12 +542,10 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
{"id": "tool_call_id", "type": "function", "function": delta.get("function_call", {})}
|
|
|
]
|
|
|
|
|
|
- # assistant_message_function_call = delta.delta.function_call
|
|
|
-
|
|
|
# extract tool calls from response
|
|
|
if assistant_message_tool_calls:
|
|
|
tool_calls = self._extract_response_tool_calls(assistant_message_tool_calls)
|
|
|
- increase_tool_call(tool_calls)
|
|
|
+ tools_calls = self._increase_tool_call(tool_calls, tools_calls)
|
|
|
|
|
|
if delta_content is None or delta_content == "":
|
|
|
continue
|
|
@@ -589,7 +570,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
continue
|
|
|
|
|
|
yield LLMResultChunk(
|
|
|
- id=message_id,
|
|
|
model=model,
|
|
|
prompt_messages=prompt_messages,
|
|
|
delta=LLMResultChunkDelta(
|
|
@@ -602,7 +582,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
|
|
|
if tools_calls:
|
|
|
yield LLMResultChunk(
|
|
|
- id=message_id,
|
|
|
model=model,
|
|
|
prompt_messages=prompt_messages,
|
|
|
delta=LLMResultChunkDelta(
|
|
@@ -611,12 +590,15 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
),
|
|
|
)
|
|
|
|
|
|
- yield create_final_llm_result_chunk(
|
|
|
- id=message_id,
|
|
|
+ yield self._create_final_llm_result_chunk(
|
|
|
index=chunk_index,
|
|
|
message=AssistantPromptMessage(content=""),
|
|
|
finish_reason=finish_reason,
|
|
|
usage=usage,
|
|
|
+ model=model,
|
|
|
+ credentials=credentials,
|
|
|
+ prompt_messages=prompt_messages,
|
|
|
+ full_content=full_assistant_content,
|
|
|
)
|
|
|
|
|
|
def _handle_generate_response(
|
|
@@ -730,12 +712,11 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
return message_dict
|
|
|
|
|
|
def _num_tokens_from_string(
|
|
|
- self, model: str, text: Union[str, list[PromptMessageContent]], tools: Optional[list[PromptMessageTool]] = None
|
|
|
+ self, text: Union[str, list[PromptMessageContent]], tools: Optional[list[PromptMessageTool]] = None
|
|
|
) -> int:
|
|
|
"""
|
|
|
Approximate num tokens for model with gpt2 tokenizer.
|
|
|
|
|
|
- :param model: model name
|
|
|
:param text: prompt text
|
|
|
:param tools: tools for tool calling
|
|
|
:return: number of tokens
|
|
@@ -758,7 +739,6 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
|
|
|
|
|
|
def _num_tokens_from_messages(
|
|
|
self,
|
|
|
- model: str,
|
|
|
messages: list[PromptMessage],
|
|
|
tools: Optional[list[PromptMessageTool]] = None,
|
|
|
credentials: Optional[dict] = None,
|