|
@@ -2,7 +2,6 @@
|
|
|
from typing import Optional
|
|
|
|
|
|
import pandas as pd
|
|
|
-import xlrd
|
|
|
|
|
|
from core.rag.extractor.extractor_base import BaseExtractor
|
|
|
from core.rag.models.document import Document
|
|
@@ -28,61 +27,19 @@ class ExcelExtractor(BaseExtractor):
|
|
|
self._autodetect_encoding = autodetect_encoding
|
|
|
|
|
|
def extract(self) -> list[Document]:
|
|
|
- """ parse excel file"""
|
|
|
- if self._file_path.endswith('.xls'):
|
|
|
- return self._extract4xls()
|
|
|
- elif self._file_path.endswith('.xlsx'):
|
|
|
- return self._extract4xlsx()
|
|
|
-
|
|
|
- def _extract4xls(self) -> list[Document]:
|
|
|
- wb = xlrd.open_workbook(filename=self._file_path)
|
|
|
+ """ Load from Excel file in xls or xlsx format using Pandas."""
|
|
|
documents = []
|
|
|
- # loop over all sheets
|
|
|
- for sheet in wb.sheets():
|
|
|
- row_header = None
|
|
|
- for row_index, row in enumerate(sheet.get_rows(), start=1):
|
|
|
- if self.is_blank_row(row):
|
|
|
- continue
|
|
|
- if row_header is None:
|
|
|
- row_header = row
|
|
|
- continue
|
|
|
- item_arr = []
|
|
|
- for index, cell in enumerate(row):
|
|
|
- txt_value = str(cell.value)
|
|
|
- item_arr.append(f'"{row_header[index].value}":"{txt_value}"')
|
|
|
- item_str = ",".join(item_arr)
|
|
|
- document = Document(page_content=item_str, metadata={'source': self._file_path})
|
|
|
- documents.append(document)
|
|
|
- return documents
|
|
|
-
|
|
|
- def _extract4xlsx(self) -> list[Document]:
|
|
|
- """Load from file path using Pandas."""
|
|
|
- data = []
|
|
|
# Read each worksheet of an Excel file using Pandas
|
|
|
- xls = pd.ExcelFile(self._file_path)
|
|
|
- for sheet_name in xls.sheet_names:
|
|
|
- df = pd.read_excel(xls, sheet_name=sheet_name)
|
|
|
+ excel_file = pd.ExcelFile(self._file_path)
|
|
|
+ for sheet_name in excel_file.sheet_names:
|
|
|
+ df: pd.DataFrame = excel_file.parse(sheet_name=sheet_name)
|
|
|
|
|
|
# filter out rows with all NaN values
|
|
|
df.dropna(how='all', inplace=True)
|
|
|
|
|
|
# transform each row into a Document
|
|
|
- for _, row in df.iterrows():
|
|
|
- item = ';'.join(f'"{k}":"{v}"' for k, v in row.items() if pd.notna(v))
|
|
|
- document = Document(page_content=item, metadata={'source': self._file_path})
|
|
|
- data.append(document)
|
|
|
- return data
|
|
|
+ documents += [Document(page_content=';'.join(f'"{k}":"{v}"' for k, v in row.items() if pd.notna(v)),
|
|
|
+ metadata={'source': self._file_path},
|
|
|
+ ) for _, row in df.iterrows()]
|
|
|
|
|
|
- @staticmethod
|
|
|
- def is_blank_row(row):
|
|
|
- """
|
|
|
-
|
|
|
- Determine whether the specified line is a blank line.
|
|
|
- :param row: row object。
|
|
|
- :return: Returns True if the row is blank, False otherwise.
|
|
|
- """
|
|
|
- # Iterates through the cells and returns False if a non-empty cell is found
|
|
|
- for cell in row:
|
|
|
- if cell.value is not None and cell.value != '':
|
|
|
- return False
|
|
|
- return True
|
|
|
+ return documents
|